## Positive solutions of superlinear elliptic equations.(English)Zbl 0951.35051

Let $$\Omega\subset \mathbb{R}^N$$ be a bounded convex domain with smooth boundary $$\Omega$$ and $$f: \mathbb{R}^+\to \mathbb{R}$$ be a locally Lipschitz continuous function with $$f(0)\geq 0$$. The elliptic problems $-\Delta u= f(u),\quad u>0,\quad x\in\Omega,\quad u= 0,\quad x\in\partial\Omega;\tag{1}$ and $-\Delta u=\lambda f(u),\quad u>0,\quad x\in\Omega,\quad u= 0,\quad x\in\partial\Omega\tag{2}$ are considered where $$\lambda\in \mathbb{R}^+$$. It is assumed that $$f$$ satisfies $\liminf_{t\to+\infty} f(t) t^{-1}> \lambda_1\tag{H1}$ and $\lim_{t\to+\infty} f(t) t^{-\ell}= 0\quad\text{for }\ell= (N+ 2)/(N- 2)\quad\text{if }N\geq 3,\;\ell<\infty\quad\text{if }N= 1,2.\tag{H2}$ $$\lambda_1$$ is the first eigenvalue of $$-\Delta$$ with zero boundary condition. If in addition $$f$$ satisfies that for some $$0\leq\Theta< 2N/(N- 2)$$ $\limsup_{t\to\infty} {tf(t)- \Theta F(t)\over t^2f(t)^{2/N}}= 0\tag{H3}$ $$(F(t)= \int^t_0 f(s) ds)$$ then in the literature existence theorems for problem (1) and (2) are known.
In this paper, the author proves existence results without assumption (H3) a conjecture made by P. L. Lions [SIAM Review 24, 441-467 (1982; Zbl 0511.35033)].

### MSC:

 35J65 Nonlinear boundary value problems for linear elliptic equations 35A05 General existence and uniqueness theorems (PDE) (MSC2000) 35B05 Oscillation, zeros of solutions, mean value theorems, etc. in context of PDEs

Zbl 0511.35033
Full Text:

### References:

  Ambrosetti, A., Critical points and nonlinear variational problems, Bull. soc. math. France, 120, (1992) · Zbl 0766.49006  Ambrosetti, A.; Brezis, H.; Cerami, G., Combined effects of concave and convex nonlinearities in some elliptic problems, J. funct. anal., 122, 519-543, (1994) · Zbl 0805.35028  Ambrosetti, A.; Rabinowitz, P.H., Dual variational methods in critical point theory and applications, J. funct. anal., 14, 349-381, (1973) · Zbl 0273.49063  Bahri, B., Topological results on a certain class of functionals and applications, J. funct. anal., 41, 397-427, (1981) · Zbl 0499.35050  Bahri, B.; Berestycki, H., A perturbation method in critical point theory and applications, Trans. amer. math. soc., 267, 1-32, (1981) · Zbl 0476.35030  Bahri, B.; Lions, P.L., Morse index of some MIN-MAX critical points, I. applications to multiplicity results, Comm. pure appl. math., 41, 1027-1037, (1988) · Zbl 0645.58013  Brezis, H., Some variational problems with lack of compactness, (), 165-201  Brezis, H., On a characterization of flow invariant sets, Comm. pure appl. math., 23, 261-263, (1970) · Zbl 0191.38703  Brezis, H.; Nirenberg, L., Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents, Comm. pure appl. math., 36, 437-477, (1983) · Zbl 0541.35029  Brezis, H.; Nirenberg, L., H1 versus C1 local minimizers, C. R. acad. sci. Paris, 317, 465-472, (1993) · Zbl 0803.35029  Brown, K.J.; Budin, H., On the existence of positive solutions for a class of semilinear elliptic BVP, SIAM J. math. anal., 10, 875-883, (1979) · Zbl 0414.35029  Castro, A.; Cossio, J., Multiple solutions for a nonlinear Dirichlet problem, SIAM J. math. anal., 25, 1554-1561, (1994) · Zbl 0807.35039  Chang, K.C., A variant mountain pass lemma, Sci. sinica, ser. A, 26, 1241-1255, (1983) · Zbl 0544.35044  Chang, K.C., Variational method and the sub- and super-solutions, Sci. sinica, ser. A, 26, 1256-1265, (1983) · Zbl 0544.35045  Chang, K.C.; Li, S.J.; Liu, J.Q., Remarks on multiple solutions for asymptotically linear elliptic boundary value problems, Topolog. methods nonlinear anal., 3, 179-187, (1994) · Zbl 0812.35031  Deimling, K., Ordinary differential equations in Banach spaces, Lecture notes in math., 596, (1977), Springer-Verlag New York/Berlin  de Figueiredo, D.G.; Lions, P.L.; Nussbaum, R.D., A priori estimates and existence results for positive solutions of semilinear elliptic equations, J. math. pure appl., 61, 41-63, (1982) · Zbl 0452.35030  de Figueiredo, D.G.; Lions, P.L., On pairs of positive solutions for a class of semilinear elliptic problems, Indiana univ. math. J., 34, 591-606, (1985) · Zbl 0587.35033  de Figueiredo, D.G.; Solimini, S., A variational approach to superlinear elliptic problems, Comm. partial differential equations, 9, 699-717, (1984) · Zbl 0552.35030  Hess, P., On multiple positive solutions of nonlinear elliptic eigenvalue problems, Comm. partial differential equations, 6, 951-961, (1981) · Zbl 0468.35073  Lions, P.L., On the existence of positive solutions of semilinear elliptic equations, SIAM review, 24, 441-467, (1982) · Zbl 0511.35033  Liu, Z., On a Dancer’s conjecture and multiple solutions of elliptic partial differential equations, Northeastern math. J., 9, 388-394, (1993) · Zbl 0818.35031  Martin, R.H., Nonlinear operators and differential equations in Banach spaces, (1976), Wiley New York  Rabinowitz, P.H., Multiple critical points of perturbed symmetric functionals, Trans. amer. math. soc., 272, 753-770, (1982) · Zbl 0589.35004  Rabinowitz, P.H., Minimax methods in critical point theory with applications to differential equations, CBMS regional conference series in math., 65, (1986), Amer. Math. Soc Providence  Struwe, M., Infinitely many critical points for functionals which are not even and applications to nonlinear boundary value problems, Manuscripta math., 32, 335-364, (1980) · Zbl 0456.35031  Sun, J., The Schauder condition in the critical point theory, Chinese sci. bull., 31, 1157-1162, (1986) · Zbl 0603.47045  Sun, J.; Liu, Z., Variational method and reversed sub- and super-solutions, Acta math. sinica, 37, 512-514, (1994) · Zbl 0810.47059
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.