×

zbMATH — the first resource for mathematics

Frequency domain formulation of linearized Navier-Stokes equations. (English) Zbl 0952.76065
Summary: A naturally parallelizable formulation is considered for solving linearized time-dependent Navier-Stokes equations. The evolution problem is first converted into a complex valued elliptic system by Fourier transformation. Existence and uniqueness are then given for the resulting problem for each frequency. Stability and regularity depending on frequency are analyzed. Next, standard finite element methods are used to approximate solutions for the transformed elliptic systems. Finally, time-dependent solutions are constructed by Fourier inversion with a full estimate of errors generated in the truncation in the Fourier transformation, quadrature rules, and finite element approximations.

MSC:
76M22 Spectral methods applied to problems in fluid mechanics
76M10 Finite element methods applied to problems in fluid mechanics
76D05 Navier-Stokes equations for incompressible viscous fluids
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Adams, R.A., Sobolev spaces, (1975), Academic Press London · Zbl 0186.19101
[2] Batchelor, G.K., An introduction to fluid mechanics, (1992), Cambridge University Press Cambridge · Zbl 0152.44402
[3] Brezzi, F.; Fortin, M., Mixed and hybrid finite element methods, (1991), Springer New York · Zbl 0788.73002
[4] Cattabriga, L., Su un problema al contorno relativo al sistema di equazioni di Stokes. rend. sem. mat. univ. Padova, 31, 308-340, (1961) · Zbl 0116.18002
[5] Constantin, P.; Foias, C., Navier – stokes equations, (1988), The University of Chicago Press Chicago, London · Zbl 0687.35071
[6] R. Dautray, J.-L. Lions, Functional and Variational Methods, Mathematical Analysis and Numerical Methods for Sciences and Technology, vol. 2, Springer, Berlin, 1988 · Zbl 0664.47001
[7] Douglas, J.; Santos, J.E.; Sheen, D., Approximation of scalar waves in the space – frequency domain, Math. mod. meth. appl. sci., 4, 509-531, (1994) · Zbl 0812.35173
[8] Douglas, J.; Santos, J.E.; Sheen, D.; Bennethum, L.S., Frequency domain treatment of one – dimensional scalar waves, Math. mod. meth. appl. sci., 3, 171-194, (1993) · Zbl 0783.65070
[9] VanDyke, M., Perturbation methods in fluid mechanics, (1964), Academic Press New York, London
[10] Girault, V.; Raviart, P.-A., Finite element methods for navier – stokes equations, theory and algorithm, (1986), Springer Berlin
[11] C. R. Illingworth, Flow at small Reynolds number. In: L. Rosenhead, (Ed.), Laminar Boundary Layers, Fluid Motion Memoirs, chapter IV. Oxford University Press, London, 1966
[12] Kellogg, R.B.; Osborn, J.E., A regularity results for the Stokes problem in a convex polygon, J. funct. anal., 21, 397-431, (1976) · Zbl 0317.35037
[13] Kim, D.; Kim, J.; Sheen, D., Absorbing boundary conditions for wave propagations in viscoelastic media, J. comput. appl. math., 76, 301-314, (1996) · Zbl 0864.73020
[14] O.A. Ladyzhenskaya, The Mathematical Theory of Viscous Incompressible Flow, volume 2 of Mathematics and Its Applications. Gordon and Breach, New York, London Paris, second English edition, 1969. Translated from the Russian by R.A. Silverman, J. Chu · Zbl 0184.52603
[15] Lee, C.-O.; Lee, J.; Sheen, D.; Yeom, Y., A frequency – domain parallel method for the numerical approximation of parabolic problems, Comput. methods appl. mech. engng., 169, 12, 19-29, (1999) · Zbl 0946.65094
[16] Oseen, C.W., Über die stokessche formel und über eine verwan dte aufgabe in der hydrodynamik, Ark. mat. astronom. fys., 6, 154-155, (1910)
[17] C.W. Oseen, Neuere Methoden und Ergebnisse in der Hydrodynamik, Akademische Verlagsgesellschaft M.B.H. Leipzig, 1927 · JFM 53.0773.02
[18] D. Sheen, J. Douglas Jr., J.E. Santos, Frequency – domain parallel algorithms for the approximation of acoustic and elastic waves, In: Numerical Analysis (Finite Element Methods), Proceedings of Applied Mathematics Workshop, pp. 243-288, KAIST, Taejon, February 16-18, 1993
[19] D. Sheen, I.H. Sloan, V. Thomée, A parallel method for time-discretization of parabolic problems based on contour integral representation quadrature. Math. Comp. 69 (2000) 117-195
[20] Temam, R., Theory and numerical analysis of the navier – stokes equations, (1977), North-Holland Amsterdam New York
[21] Thomasset, F., Implementation of finite element methods for navier – stokes equations, (1981), Springer New York · Zbl 0475.76036
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.