×

zbMATH — the first resource for mathematics

Discrete wavelet models for identification and qualitative analysis of chaotic systems. (English) Zbl 0955.93502

MSC:
93B30 System identification
37D45 Strange attractors, chaotic dynamics of systems with hyperbolic behavior
Software:
ASMOD
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] DOI: 10.1142/S0218127494000617 · Zbl 0900.70335
[2] DOI: 10.1142/S0218127494000095 · Zbl 0876.58028
[3] Aguirre L. A., Physica 80 pp 26– (1995)
[4] Aguirre L. A., Physica 85 pp 239– (1995)
[5] DOI: 10.1109/TAC.1974.1100705 · Zbl 0314.62039
[6] DOI: 10.1049/ip-d.1980.0047
[7] DOI: 10.1142/S0218127495001174 · Zbl 0925.93581
[8] DOI: 10.1080/00207178908953473 · Zbl 0686.93092
[9] Billings S. A., Proc. Institution of Electrical Engineers Part D 130 pp 193– (1983)
[10] DOI: 10.1080/00207178608933633 · Zbl 0597.93058
[11] Cao L., Physica 85 pp 225– (1995)
[12] DOI: 10.1142/S0218127493001112 · Zbl 0886.58076
[13] DOI: 10.1080/00207178908559683 · Zbl 0674.93009
[14] DOI: 10.1080/00207178908953472 · Zbl 0686.93093
[15] Chua L. O., Archiv für Elektronik und Übertragungstechnik 46 (4) pp 250– (1992)
[16] Chua L. O., IEEE Trans. Circuits Syst. 40 pp 593– (1993)
[17] DOI: 10.2307/2153941 · Zbl 0759.41008
[18] DOI: 10.1142/S0218127497000066 · Zbl 0925.93153
[19] Crutchfield J. P., Complex Syst. 1 pp 417– (1987)
[20] DOI: 10.1142/S0218127494000307 · Zbl 0813.58036
[21] DOI: 10.2307/2374796 · Zbl 0764.41024
[22] DOI: 10.1088/0305-4470/25/4/021
[23] DOI: 10.1103/PhysRevLett.59.845
[24] DOI: 10.2307/2287576
[25] Grassberger P., Physica 9 pp 189– (1983)
[26] DOI: 10.1016/0005-1098(90)90044-I · Zbl 0721.93023
[27] DOI: 10.1109/63.124574
[28] Haynes B. R., J. Nonlin. Dyn. 5 pp 93– (1994)
[29] Judd K., Physica 82 pp 426– (1995)
[30] Kantz H., Phys. Rev. 185 pp 77– (1994)
[31] DOI: 10.1080/00207179308923037 · Zbl 0786.93016
[32] Kavli T., Proc. IEE Coll. Advances in Neural Networks for Control & Systems, IEE London UK 78 pp 1– (1994)
[33] DOI: 10.1109/81.246141 · Zbl 0844.58059
[34] DOI: 10.1080/0020718508961129 · Zbl 0569.93011
[35] DOI: 10.1080/0020718508961130 · Zbl 0569.93012
[36] DOI: 10.1109/34.192463 · Zbl 0709.94650
[37] DOI: 10.1109/78.258082 · Zbl 0842.94004
[38] DOI: 10.1142/S021812749300057X · Zbl 0875.62426
[39] DOI: 10.1103/PhysRevLett.64.1196 · Zbl 0964.37501
[40] DOI: 10.1142/S0218127492000598 · Zbl 0900.62497
[41] Rosenstein M. T., Physica 65 pp 117– (1993)
[42] DOI: 10.1016/0005-1098(95)00120-8 · Zbl 0846.93018
[43] DOI: 10.1007/s002110050068 · Zbl 0839.65022
[44] DOI: 10.1016/0020-7462(85)90024-1
[45] Wolf A., Physica 16 pp 285– (1985)
[46] DOI: 10.1109/72.165591
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.