A continuum model of grain boundaries. (English) Zbl 0956.35123

Summary: A two-dimensional frame-invariant phase field model of grain boundaries is developed. One-dimensional analytical solutions for a stable grain boundary in a bicrystal are obtained, and equilibrium energies are computed. With an appropriate choice of functional dependencies, the grain boundary energy takes the same analytic form as the microscopic (dislocation) model of Read and Shockley. In addition, dynamic (one-dimensional) solutions are presented, showing rotation of a small grain between two pinned grains and the shrinkage and rotation of cricular grains embedded in a larger crystal.


35Q72 Other PDE from mechanics (MSC2000)
74N20 Dynamics of phase boundaries in solids
Full Text: DOI


[1] Read, W.T.; Shockley, W., Phys. rev., 78, 275, (1950)
[2] A.P. Sutton, R.W. Balluffi, Interfaces in Crystalline Materials, Oxford University Press, Oxford, 1996.
[3] Kobayashi, R.; Warren, J.A.; Carter, W.C., Physica D, 119, 415, (1998)
[4] Warren, J.A.; Carter, W.C.; Kobayashi, R., Physica A, 261, 159, (1998)
[5] Morin, B.; Elder, K.R.; Sutton, M.; Grant, M., Phys. rev. lett., 75, 2156, (1995)
[6] M.T. Lusk, Preprint.
[7] Chen, L.Q.; Yang, W., Phys. rev. B, 50, 15752, (1994)
[8] Steinbach, I.; Pezzolla, F.; Nestler, B.; BeeBelber, M.; Prieler, R.; Schmitz, G.J.; Rezende, J.L.L., Physica D, 94, 135, (1996)
[9] Lusk, M.T., Proc. roy. soc. London A, 455, 677, (1999)
[10] R. Kobayashi, J.A. Warren, W.C. Carter, in preparation.
[11] Carter, W.C.; Taylor, J.E.; Cahn, J.W., J. met., 49, 30, (1997)
[12] Giga, M.-H.; Giga, Y., Arch. rational mech. anal., 141, 117, (1998)
[13] Kobayashi, R.; Giga, Y., J. statist. phys., 95, 1187, (1999)
[14] Allen, S.; Cahn, J.W., Acta metall., 27, 1085, (1979)
[15] Li, J.C.M., J. appl. phys., 33, 2958, (1961)
[16] Hu, H., Trans. AIME, 224, 75, (1961)
[17] Harris, K.E.; Singh, V.V.; King, A.H., Acta mater., 46, 2623, (1998)
[18] M.-H. Giga, Y. Giga, R. Kobayashi, in: T. Sunada (Ed.), Proceedings of the Taniguchi Symposium, Mara, 1998, to appear.
[19] Kobayashi, R., Physica D, 63, 410, (1993)
[20] Wheeler, A.A.; McFadden, G.B., Eur. J. appl. math., 7, 367, (1995)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.