The relative efficiency of method of moments estimators. (English) Zbl 0956.62030

Summary: The asymptotic relative efficiency of efficient method of moments when implemented with a seminonparametric auxiliary model is compared to that of conventional method of moments when implemented with polynomial moment functions. Because the expectations required by these estimators can be computed by simulation, these two methods are commonly used to estimate the parameters of nonlinear latent variables models. The comparison is for the models in the Marron-Wand test suite [J.S. Marron and M.P. Wand, Ann. Stat. 20, No. 2, 712-736 (1992; Zbl 0746.62040)], a scale mixture of normals, and the second largest order statistic of the lognormal distribution. The latter models are representative of financial market data and auction data, respectively, which are the two most common applications of simulation estimators. Efficient method of moments dominates conventional method of moments over these models.


62G07 Density estimation
62P05 Applications of statistics to actuarial sciences and financial mathematics
62P20 Applications of statistics to economics


Zbl 0746.62040
Full Text: DOI


[1] Abramowitz, M.; Stegun, I. A.: Handbook of mathematical functions with formulas, graphs, and mathematical tables. (1972) · Zbl 0543.33001
[2] Andersen, T. G.; Lund, J.: Estimating continuous time stochastic volatility models of the short term interest rate. Journal of econometrics 77, 343-378 (1997) · Zbl 0925.62529
[3] Andersen, T.G., Lund, J., 1997b. Stochastic volatility and mean drift in the short rate diffusion: sources of steepness, level, and curvature of the yield curve. Manuscript #214, Kellogg School of Management, Northwestern University, Evanston IL.
[4] Andersen, T.G., Chung, H.-J., Sorensen, B.E., 1998. Efficient method of moments estimation of a stochastic volatility model: a Monte Carlo study. Journal of Econometrics, forthcoming.
[5] Businger, P. A.; Golub, G. H.: Singular value decomposition of a complex matrix. Communications of the ACM 12, 564-565 (1969)
[6] Clark, P. K.: A subordinated stochastic process model with finite variance for speculative prices. Econometrica 41, 135-156 (1973) · Zbl 0308.90011
[7] Chumacero, R.: Finite sample properties of the efficient method of moments. Studies in nonlinear dynamics and econometrics 2, 35-51 (1997) · Zbl 1078.91557
[8] Duffie, D.; Singleton, K. J.: Simulated moments estimation of Markov models of asset prices. Econometrica 61, 929-952 (1993) · Zbl 0783.62099
[9] Fenton, V. M.; Gallant, A. R.: Qualitative and asymptotic performance of SNP density estimators. Journal of econometrics 74, 77-118 (1996) · Zbl 0866.62078
[10] Fisher, R. A.: On an absolute criterion for Fitting frequency curves. Messages of mathematics 41, 155-157 (1912)
[11] Gallant, A. R.: Explicit estimators of parametric functions in nonlinear regression. Journal of the American statistical association 75, 182-193 (1980) · Zbl 0425.62045
[12] Gallant, A. R.; Hsieh, D. A.; Tauchen, G.: Estimation of stochastic volatility models with diagnostics. Journal of econometrics 81, 159-192 (1997) · Zbl 0904.62134
[13] Gallant, A. R.; Long, J.: Estimating stochastic differential equations efficiently by minimum chi-squared. Biometrika 84, 125-141 (1997) · Zbl 0953.62084
[14] Gallant, A. R.; Nychka, D. W.: Seminonparametric maximum likelihood estimation. Econometrica 55, 363-390 (1987) · Zbl 0631.62110
[15] Gallant, A. R.; Rossi, P. E.; Tauchen, G.: Stock prices and volume. Review of financial studies 5, 199-242 (1992)
[16] Gallant, A. R.; Tauchen, G.: Seminonparametric estimation of conditionally constrained heterogeneous processesasset pricing applications. Econometrica 57, 1091-1120 (1989) · Zbl 0679.62096
[17] Gallant, A.R., Tauchen, G., 1996. Which moments to match? Econometric Theory 12, 657–681.
[18] Gallant, A. R.; Tauchen, G.: Reprojecting partially observed systems with application to interest rate diffusions. Journal of the American statistical association 93, 10-24 (1998) · Zbl 0920.62132
[19] Gauss, C. F.: Bestimmung der genauigkeit der beobachtungen. Zeitschrift für astronomie und verwandte wissenschaften 1, 185-196 (1816)
[20] Ghysels, E.; Harvey, A.; Renault, E.: Stochastic volatility. Handbook of statistics, vol. 14, statistical methods in finance 14 (1995)
[21] Golub, G. H.; Welsch, J. H.: Calculation of Gaussian quadrature rules. Mathematics of computation 23, 221-230 (1969) · Zbl 0179.21901
[22] Gourieroux, C.; Monfort, A.; Renault, E.: Indirect inference. Journal of applied econometrics 8, S85-S118 (1993)
[23] Hansen, L. P.: Large sample properties of generalized methods of moments estimators. Econometrica 50, 1029-1054 (1982) · Zbl 0502.62098
[24] Ingram, B. F.; Lee, B. S.: Simulation estimation of time series models. Journal of econometrics 47, 197-250 (1991) · Zbl 0714.62107
[25] Johnson, N.L., Kotz, S., 1994. Continuous Univariate Distributions-1, 2nd ed., Chapter 14. Wiley, New York. · Zbl 0811.62001
[26] Laffont, J. -J.; Ossard, H.; Vuong, Q.: The econometrics of first price auctions. Econometrica 63, 953-980 (1995) · Zbl 0836.90060
[27] Marron, J. S.; Wand, M. P.: Exact mean integrated squared error. The annals of statistics 20, 712-736 (1992) · Zbl 0746.62040
[28] Neyman, J., Pearson, E.S., 1928. On the use and interpretation of certain test criteria for purposes of statistical inference. Biometrika 20A, 175–240, 263–294. · JFM 54.0565.05
[29] Ng, S., Michaelides, A., 1997. Estimating the rational expectations model of speculative storage: a Monte Carlo comparison of three simulation estimators. Manuscript, Department of Economics, Boston College, Boston MA.
[30] Pearson, K.: Contributions to the mathematical theory of evolution. Philosophical transactions of the royal society of London 185, 71-78 (1894) · JFM 25.0347.02
[31] Schwarz, G.: Estimating the dimension of a model. Annals of statistics 6, 461-464 (1978) · Zbl 0379.62005
[32] Smith, A. A.: Estimating nonlinear time series models using simulated vector autoregressions. Journal of applied econometrics 8, S63-S84 (1993)
[33] Tauchen, G.: New minimum chi-square methods in empirical finance. Advances in econometrics, seventh world congress, 279-317 (1997)
[34] Tauchen, G.: The objective function of simulation estimators near the boundary of the unstable region of the parameter space. Review of economics and statistics 80, 389-398 (1998)
[35] Tauchen, G.; Pitts, M.: The price variability-volume relationship on speculative markets. Econometrica 51, 485-505 (1983) · Zbl 0495.90026
[36] Wolfowitz, J.: Asymptotic efficiency of maximum likelihood estimators. Theory of probability and its applications 10, 247-260 (1965) · Zbl 0142.15402
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.