Homoclinics and chaotic behaviour for perturbed second order systems. (English) Zbl 0957.37019

The authors deal with homoclinics and chaotic behaviour for perturbed dynamical systems and partial differential equations. They prove a connection between multiplicity results for homoclinics and the properties of the Melnikov primitive, which is based on a variational approach. The authors do not require any general restriction on the time-dependence of the perturbation such as periodicity, almost periodicity, etc.


37C29 Homoclinic and heteroclinic orbits for dynamical systems
37D45 Strange attractors, chaotic dynamics of systems with hyperbolic behavior
Full Text: DOI


[1] A. Ambrosetti—M. Badiale,Homoclinics: Poincaré-Melnikov type results via a variational approach, C. R. Acad. Sci. Paris, t. 323, Série I (1996), pp. 753-758; Annales I.H.P, vol.15, n. 2 (1998), pp. 233-252. · Zbl 0887.34042
[2] Ambrosetti, A.; Badiale, M.; Cingolani, S., Semiclassical states of nonlinera Schrödinger equations, Archive Rat. Mech. Anal., 140, 285-300 (1997) · Zbl 0896.35042
[3] Ambrosetti, A.; Coti-Zelati, V.; Ekeland, I., Symmetry breaking in Hamiltonian systems, Journal Diff. Equat., 67, 165-184 (1987) · Zbl 0606.58043
[4] S. Angenant,A variational interpretation of Melnikov’s function and exponentially small separatrix splitting, Lecture notes of the London Math. Soc., Sympletic geometry, ed. Dietmar Salamon.
[5] S. Angenant,The shadowing lemma for elliptic PDEs, Proceedings of the NATO workshop onThe dynamics of infinite Dimensional Systems, Lisbon (1986).
[6] Bessi, U., A variational proof of a Sitnikov like theorem, Nonlinear Analysis TMA, 20, 1303-1318 (1993) · Zbl 0778.34036
[7] Bolotin, S., The existence of homoclinic motions, Moscow Univ. Math. Boll., 38, 117-123 (1983) · Zbl 0549.58019
[8] Coti-Zelati, V.; Ekeland, I.; Séré, E., A variational approach to homoclinic orbits in Hamiltonian systems, Math. Ann., 288, 133-160 (1990) · Zbl 0731.34050
[9] Coti-Zelati, V.; Montecchiari, P.; Nolasco, M., Multibump homoclinic solutions for a class of second-order, almost-periodic Hamiltonian systems, NoDEA, Nonlinear Differential Equations Appl., 4, 77-99 (1997) · Zbl 0878.34045
[10] Coti-Zelati, V.; Rabinowitz, P., Homoclinic orbits for second order Hamiltonian systems possessing super-quadratic potentials, J. of the Am. Math. Soc., 4, 693-727 (1991) · Zbl 0744.34045
[11] Mathlouti, S., Bifurcation d’orbites homoclines pour les systèmes hamiltoniens, Ann. Fac. Sciences Toulouse, 1, 211-235 (1992)
[12] Melnikov, V. K., On the stability of the center for time periodic perturbations, Trans. Moscow Math. Soc., 12, 3-52 (1963)
[13] P. Montecchiari—M. Nolasco,Multibump solutions for perturbations of periodic second order Hamiltonian systems, Nonlinear anal. and applications, TMA,27, pp. 1335-1372. · Zbl 0863.34050
[14] Poincaré, H., Les méthodes nouvelles de la mécanique céleste (1889), Paris: Gauthiers-Villars, Paris
[15] Serra, E.; Tarallo, M.; Terracini, S., On the existence of homoclinic solutions for almost periodic second order systems, Ann. Inst. H. Poincaré Anal. Nonlin, 13, 783-812 (1996) · Zbl 0873.58032
[16] Séré, E., Existence of infinitely many homoclinic orbits in Hamiltonian systems, Math. Zeitschrift, 209, 27-42 (1992) · Zbl 0725.58017
[17] Séré, E., Looking for the Bernoulli shift, Ann. Inst. H. Poincaré, Anal. Nonlin., 10, 561-590 (1993) · Zbl 0803.58013
[18] S. Wiggins,Global Bifurcation and Chaos, Applied Mathematical Sciences, Vol.73, Springer-Verlag. · Zbl 0661.58001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.