zbMATH — the first resource for mathematics

Quasi-shuffle products. (English) Zbl 0959.16021
Let \(k\) be a subfield of \(\mathbb{C}\), \(A\) a locally finite graded set, and let \(\mathcal A=k\langle A\rangle\) be the graded noncommutative polynomial algebra. Given a commutative associative operation on \(A\) that adds degrees, the author defines a commutative multiplication \(*\) on \(\mathcal A\), called the quasi-shuffle product. Moreover, he shows that there is a Hopf algebra structure \((\mathcal A,*,\Delta)\) and an isomorphism \(\exp\) of the shuffle Hopf algebra \((\mathcal A,\text{III},\Delta)\) onto \((\mathcal A,*,\Delta)\) such that both the set \(L\) of Lyndon words on \(A\) and their images \(\exp(L)\) freely generate the algebra \((\mathcal A,*)\). The graded dual of \((\mathcal A,*,\Delta)\) and a \(q\)-deformation \(*_q\) are also studied, and several examples are discussed.

16W30 Hopf algebras (associative rings and algebras) (MSC2000)
16W50 Graded rings and modules (associative rings and algebras)
16S36 Ordinary and skew polynomial rings and semigroup rings
16S80 Deformations of associative rings
05E05 Symmetric functions and generalizations
Full Text: DOI
[1] Broadhurst, D. J.; Borwein, J. M.; Bradley, D. M., Evaluation of irreducible {\bfk}-fold Euler/Zagier sums: a compendium of results for arbitrary \(k,\) Electron. J. Combin., 4, r5, (1997) · Zbl 0884.40004
[2] Broadhurst, D. J., Massive 3-loop Feynman diagrams reducible to SC* primitives of algebras at the sixth root of unity, Eur. Phys. & C. Part Fields, 8, 311-333, (1999)
[3] E.J. Ditters and A.C.J. Scholtens, “Note on free polynomial generators for the Hopf algebra QSym of quasisymmetric functions,” preprint. · Zbl 0942.16041
[4] Duchamp, G.; Klyachko, A.; Krob, D.; Thibon, J.-Y., Noncommutative symmetric functions III: deformations of Cauchy and convolution algebras, Disc. Math. Theor. Comput. Sci., 1, 159-216, (1997) · Zbl 0930.05097
[5] Ehrenborg, R., On posets and Hopf algebras, Adv. Math., 119, 1-25, (1996) · Zbl 0851.16033
[6] F. Fares, “Quelques constructions d”algèbres et de coalgèbres,” Thesis, Université du Québec à Montréal.
[7] Gelfand, I. M.; Krob, D.; Lascoux, A.; Leclerc, B.; Retakh, V. S.; Thibon, J.-Y., Noncommutative symmetric functions, Adv. Math., 112, 218-348, (1995) · Zbl 0831.05063
[8] Gessel, I. M., Multipartite P-partitions and inner products of skew Schur functions, 289-301, (1984), Providence · Zbl 0562.05007
[9] Goncharov, A. B., Multiple polylogarithms, cyclotomy, and modular complexes, Math. Res. Lett., 5, 497-516, (1998) · Zbl 0961.11040
[10] Green, J. A., Quantum groups, Hall algebras and quantized shuffles, No. 141, 273-290, (1997), Boston · Zbl 0890.17007
[11] M. Hazewinkel, “The Leibniz-Hopf algebra and Lyndon words,” Centrum voor Wiskunde en Informatica Report AM-R9612, 1996.
[12] Hoffman, M. E., The algebra of multiple harmonic series, J. Algebra, 194, 477-495, (1997) · Zbl 0881.11067
[13] Malvenuto, C.; Reutenauer, C., Duality between quasi-symmetric functions and the Solomon descent algebra, J. Algebra, 177, 967-982, (1995) · Zbl 0838.05100
[14] C. Reutenauer, Free Lie Algebras, Oxford University Press, New York, 1993.
[15] M. Rosso, “Groupes quantiques et algèbres de battage quantiques,” Comptes Rendus de 1’ Acad. Sci. Paris Sér. I320 (1995), 145-148.
[16] A.C.J. Scholtens, “\(S\)-typical curves in noncommutative Hopf algebras,” Thesis, Vrije Universiteit, Amsterdam, 1996.
[17] M. Sweedler, Hopf Algebras, Benjamin, New York, 1969.
[18] Thibon, J.-Y.; Ung, B.-C.-V., Quantum quasi-symmetric functions and Hecke algebras, J. Phys. A: Math. Gen., 29, 7337-7348, (1996) · Zbl 0962.05060
[19] Varchenko, A., Bilinear form of real configuration of hyperplanes, Adv. Math., 97, 110-144, (1993) · Zbl 0777.52006
[20] Zagier, D., Values of zeta functions and their applications, 497-512, (1994), Boston · Zbl 0822.11001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.