Kuttler, Kenneth L.; Shillor, Meir Set-valued pseudomonotone maps and degenerate evolution inclusions. (English) Zbl 0959.34049 Commun. Contemp. Math. 1, No. 1, 87-123 (1999). The authors prove existence and uniqueness of a weak solution to the problem \[ (Bu)'+Au\ni f,\;u(0)=u_0, \] in a Banach space and then apply the theory to a frictional contact problem. \(B\) is assumed to be linear and is allowed to vanish. \(A\) is assumed to be a pseudomonotone set-valued operator. The proof of this theorem is based on the method of elliptic regularization from J. L. Lions [Quelques methods de resolution des problèmes aux limites nonlinéaires, Dunod, Paris (1969; Zbl 0189.40603)] adapted to the set-valued case. Notation, terminology and other preliminaries are given in section 2, while section 3 contains a number of technical lemmas needed for the proof of the main results, stated in theorems 4.3, 4.4 and 4.5. Sections 5-8 give a detailed explanation of the application, a problem of frictional contact between a deformable body and a moving rigid foundation. Theorems 4.4 and 4.5 are applied to the problem to obtain existence and uniqueness of a solution. The authors cite references for earlier work on this evolution inclusion and also information on pseudomonotone maps, plus give a number of references concerning related friction problems. Reviewer: Daniel C.Biles (Bowling Green) Cited in 3 ReviewsCited in 33 Documents MSC: 34G25 Evolution inclusions 47H05 Monotone operators and generalizations 47H04 Set-valued operators 47N20 Applications of operator theory to differential and integral equations 49J40 Variational inequalities 74M15 Contact in solid mechanics 74M10 Friction in solid mechanics Keywords:pseudomonotone; degenerate evolution inclusions; frictional contact; elliptic regularization; weak solution PDF BibTeX XML Cite \textit{K. L. Kuttler} and \textit{M. Shillor}, Commun. Contemp. Math. 1, No. 1, 87--123 (1999; Zbl 0959.34049) Full Text: DOI References: [1] DOI: 10.1016/0362-546X(91)90035-Y · Zbl 0722.73061 · doi:10.1016/0362-546X(91)90035-Y [2] Andrews K. T., Euro. J. Appl. Math. 8 pp 417– (1997) [3] DOI: 10.1016/S0020-7225(97)87426-5 · Zbl 0903.73065 · doi:10.1016/S0020-7225(97)87426-5 [4] DOI: 10.1016/0020-7225(95)00121-2 · Zbl 0900.73684 · doi:10.1016/0020-7225(95)00121-2 [5] DOI: 10.1016/0020-7225(94)E0042-H · Zbl 0899.73473 · doi:10.1016/0020-7225(94)E0042-H [6] Ionescu I. R., Eur. J. Mech. A/Solids 13 (4) pp 555– (1994) [7] DOI: 10.1016/0020-7225(88)90032-8 · Zbl 0662.73079 · doi:10.1016/0020-7225(88)90032-8 [8] DOI: 10.1016/0362-546X(86)90050-7 · Zbl 0603.47038 · doi:10.1016/0362-546X(86)90050-7 [9] DOI: 10.1016/0362-546X(95)00170-Z · Zbl 0865.73054 · doi:10.1016/0362-546X(95)00170-Z [10] DOI: 10.1016/0362-546X(87)90055-1 · doi:10.1016/0362-546X(87)90055-1 [11] DOI: 10.1007/BFb0086760 · doi:10.1007/BFb0086760 [12] DOI: 10.1512/iumj.1974.23.23056 · Zbl 0281.34061 · doi:10.1512/iumj.1974.23.23056 [13] DOI: 10.1016/0020-7683(95)00140-9 · Zbl 0926.74012 · doi:10.1016/0020-7683(95)00140-9 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.