zbMATH — the first resource for mathematics

Numerical simulation of axisymmetric free surface flows. (English) Zbl 0960.76061
Summary: This paper describes an extension of the GENSMAC code for solving two-dimensional free surface flows to axisymmetric flows. Like GENSMAC, the technique is finite difference based and embodies, but considerably extends, the SMAC (simplified marker and cell) ideas. It incorporates adaptive time stepping and an accurate representation of the free surfaces while at the same time only uses surface particles to define the free surfaces, greatly increasing the computational speed; in addition, it employs a graphic interface with solid modeling techniques to provide enhanced three-dimensional visualization. Various simulations are undertaken to illustrate and validate typical flows. Both G. I. Taylor’s viscous jet plunging into a fluid and a liquid drop splashing onto a fluid are simulated. Also, the important industrial application of container filling is illustrated. Finally, a comparison is made with the linear theory of standing waves, and the code is validated by a convergence study.

76M20 Finite difference methods applied to problems in fluid mechanics
76D27 Other free boundary flows; Hele-Shaw flows
Full Text: DOI
[1] Shyy, W.; Vdaykumar, H.S.; Rao, M.M.; Smith, R.W., Computational fluid dynamics with moving boundaries, (1996)
[2] LeVeque, R.J., Numerical methods for conservation laws, (1992) · Zbl 0847.65053
[3] Hirsch, C., Numerical computation of internal and external flows, Numerical methods in engineering, 1, (1988)
[4] Richtmyer, R.D.; Morton, K.W., Difference methods for initial value problems, (1967) · Zbl 0155.47502
[5] Glimm, J.; Grove, J.; Lindquist, B.; McBryan, O.; Tryggvason, G., The bifurcation of tracked scalar waves, SIAM J. sci. stat. comput., 9, 61, (1988) · Zbl 0636.65132
[6] Chern, I.-L.; Glimm, J.; McBryan, O.; Plohr, B.; Yaniv, S., Front tracking for gas dynamics, J. comput. phys., 62, 83, (1986) · Zbl 0577.76068
[7] P. Daripa, J. Glimm, B. Lindquist, M. Maesumi, and, O. McBryan, On the simulation of heterogeneous petroleum reservoirs, in, Numerical Simulation in Oil Recovery, edited by, M. Wheeler, Springer-Verlag, New York, 1988.
[8] Moretti, G., Computation of flows with shocks, Ann. rev. fluid mech., 19, 313, (1987)
[9] Peskin, C.S., Numerical analysis of blood flow in the heart, J. comput. phys., 25, 220, (1977) · Zbl 0403.76100
[10] Fauci, L.J.; Peskin, C.S., A computational model of aquatic animal locomotion, J. comput. phys., 77, 85, (1988) · Zbl 0641.76140
[11] Fogelson, A.L.; Peskin, C.S., A fast numerical method for solving the three-dimensional Stokes equations in the presence of gas suspended particles, J. comput. phys., 79, 50, (1988) · Zbl 0652.76025
[12] Baker, G.R.; Moore, D.W., The rise and distorsion of a two-dimensional gas bubble in an inviscid liquid, Phys. fluids A1, 9, 1451, (1989) · Zbl 0697.76117
[13] Tsai, T.M.; Miksis, M.J., Dynamics of a drop in a constricted capillary tube, J. fluid mech., 274, 197, (1994) · Zbl 0825.76139
[14] Meng, J.C.S.; Thomson, J.A.L., Numerical studies of some nonlinear hydrodynamic problems by discrete vortex element methods, J. fluid mech., 84, 433, (1978) · Zbl 0373.76019
[15] Tryggvason, G., Numerical simulations of the rayleigh – taylor instability, J. comput. phys., 75, 253, (1988) · Zbl 0638.76056
[16] Unverdi, S.O.; Tryggvason, G., A front-tracking method for viscous, incompressible, multi-fluid flows, J. comput. phys., 100, 25, (1992) · Zbl 0758.76047
[17] Osher, S.; Sethian, J.A., Fronts propagating with curvature-dependent speed: algorithms based on hamilton – jacobi formulations, J. comput. phys., 79, 1, (1988) · Zbl 0659.65132
[18] Sussman, M.; Smereka, P.; Osher, S., A level set approach for computing solutions to incompressible two-phase flow, J. comput. phys., 114, 146, (1994) · Zbl 0808.76077
[19] Bell, J.B.; Marcus, D.L., A second-order projection method for variable-density flows, J. comput. phys., 101, 334, (1992) · Zbl 0759.76045
[20] Beaux, F.; Banerjee, S., Numerical simulation of three-dimensional two-phase flows by means of a lever set method, Eccomas 96, (1996)
[21] Harlow, F.; Welch, J.E., Numerical calculation of time-dependent viscous incompressible flow of fluid with a free surface, Phys. fluids, 8, 2182, (1965) · Zbl 1180.76043
[22] A. A. Amsden, and, F. H. Harlow, The SMAC method: A numerical technique for calculating incompressible fluid flow, Report LA-4370, Los Alamos Scientific Laboratory, 1971.
[23] Miyata, H., Finite difference similation of breaking waves, J. comput. phys., 65, 179, (1986)
[24] Viecelli, J.A., A computing method for incompressible flows bounded by moving walls, J. comput. phys., 8, 119, (1971) · Zbl 0222.76033
[25] Hirt, C.W.; Shannon, J.P., Free surface stress conditions for incompressible flow calculations, J. comput. phys., 2, 403, (1968) · Zbl 0197.25901
[26] Udaykumar, H.S.; Kan, H.-C.; Shyy, W.; Tran-Son-Tay, R., Multiphase dynamics in arbitrary geometries on fixed Cartesian grids, J. comput. phys., 137, 366, (1997) · Zbl 0898.76087
[27] W. F. Noh, and, P. R. Woodward, SLIC (Simple Line Interface Calculation), Lecture Notes in Physics, edited by, A. I. van der Vooren and P. J. Zandbergen, Springer-Verlag, New York/Berlin, 1976, Vol, 59. · Zbl 0382.76084
[28] Chorin, A.J., Flame advection and propagation algorithms, J. comput. phys., 35, 1, (1980) · Zbl 0425.76086
[29] Ghoniem, A.F.; Chorin, A.J.; Oppenheim, A.K., Numerical modeling of turbulent flow in a combustion tunnel, Phil. trans. roy. soc. London A, 304, 303, (1982) · Zbl 0478.76066
[30] Sethian, J.A., Turbulent combustion in open and closed vessels, J. comput. phys., 54, 425, (1984) · Zbl 0594.76047
[31] Hirt, C.W.; Nichols, B.D., Volume of fluid (VOF) method for the dynamics of free boundaries, J. comput. phys., 39, 201, (1981) · Zbl 0462.76020
[32] Nichols, B.D.; Hirt, C.W.; Hotchkins, R.S., SOLA-VOLF: A solution algorithm for transient fluid flow with multiple free boundaries, (Aug. 1988)
[33] Torrey, M.D.; Cloutman, L.D.; Mjolsness, R.C.; Hirt, C.W., NASA-VOF2D: A computer program for incompressible flow with free surfaces, (Dec. 1985)
[34] Torrey, M.D.; Mjolsness, R.C.; Stein, L.R., NASA-VOF3D: A three-dimensional computer program for incompressible flows with free surface, (July 1987)
[35] Kothe, D.B.; Mjolsness, R.C., RIPPLE: A new model for incompressible flows with free surfaces, Aiaa j., 30, 2694, (1992) · Zbl 0762.76074
[36] Kothe, B.; Mjolsness, R.C.; Torrey, M.D., RIPPLE: A computer program for incompressible flows with free surfaces, (April 1991)
[37] Hirt, C.W., Flow-3D users manual, (1988)
[38] Puckett, E.G.; Almgren, A.S.; Bell, J.B.; Marcus, D.L.; Rider, W.J., A high order projection method for tracking fluid interfaces in variable density incompressible flows, J. comput. phys., 130, 269, (1997) · Zbl 0872.76065
[39] Tome, M.F.; McKee, S., GENSMAC: A computational marker-and-cell method for free surface flows in general domains, J. comput. phys., 110, 171, (1994) · Zbl 0790.76058
[40] Tome, M.F.; Duffy, B.; McKee, S., A numerical technique for solving unsteady non-Newtonian free surface flows, J. non-Newtonian fluid mech., 62, 9, (1996)
[41] Tome, M.F., A multiple free surface fluid flow solver, (1993)
[42] Batchelor, G.K., An introduction to fluid dynamics, (1967) · Zbl 0152.44402
[43] Taylor, G.I., Film notes for low-Reynolds number flows, (1967)
[44] Schroeder, W.; Martin, K.; Lorensen, B., The visualization toolkit—an object-oriented approach to 3D graphics, (1996)
[45] Minghim, R.; Oliveira, M.C.F., Three-dimensional visualization of free surface flows, (1996)
[46] Stoker, J.J., Water waves, (1957) · Zbl 0078.40805
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.