×

Graviton propagators, brane bending and bending of light in theories with quasi-localized gravity. (English) Zbl 0960.83039

Summary: We derive the graviton propagator on the brane for theories with quasi-localized gravity. In these models the ordinary 4D graviton is replaced by a resonance in the spectrum of massive Kaluza-Klein modes, which can decay into the extra dimension. We find that the effects of the extra polarization in the massive graviton propagator is exactly cancelled by the bending of the brane due to the matter sources, up to small corrections proportional to the width of the resonance. Thus at intermediate scales the classic predictions of Einstein’s gravity are reproduced in these models to arbitrary precision.

MSC:

83E30 String and superstring theories in gravitational theory
83E15 Kaluza-Klein and other higher-dimensional theories
PDF BibTeX XML Cite
Full Text: DOI arXiv

References:

[1] Randall, L.; Sundrum, R., Phys. rev. lett., 83, 4690, (1999), hep-th/9906064
[2] Randall, L.; Sundrum, R., Phys. rev. lett., 83, 3370, (1999), hep-ph/9905221
[3] Arkani-Hamed, N.; Dimopoulos, S.; Dvali, G.; Kaloper, N., Phys. rev. lett., 84, 586, (2000), hep-th/9907209
[4] C. Csáki, Y. Shirman, Phys. Rev. D 61 (2000) 024008, hep-th/9908186; A.E. Nelson, hep-th/9909001.
[5] S.M. Carroll, S. Hellerman, M. Trodden, hep-th/9911083. S. Nam, hep-th/9911104.
[6] K. Behrndt, M. Cvetic, hep-th/9909058; O. DeWolfe, D.Z. Freedman, S.S. Gubser, A. Karch, hep-th/9909134; A. Chamblin, G.W. Gibbons, hep-th/9909130.
[7] M. Gremm, hep-th/9912060.
[8] C. Csáki, J. Erlich, T.J. Hollowood, Y. Shirman, hep-th/0001033.
[9] M. Gremm, hep-th/0002040.
[10] Kallosh, R.; Linde, A., Jhep, 0002, 005, (2000), hep-th/0001071
[11] H. Verlinde, hep-th/9906182.
[12] Skenderis, K.; Townsend, P.K., Phys. lett. B, 468, 46, (1999), hep-th/9909070
[13] Brandhuber, A.; Sfetsos, K., Jhep, 9910, 013, (1999), hep-th/9908116
[14] S.S. Gubser, hep-th/9912001.
[15] A. Chamblin, S.W. Hawking, H.S. Reall, hep-th/9909205; R. Emparan, G. Horowitz, R. Myers, hep-th/9911043; hep-th/9912135; A. Chamblin, C. Csáki, J. Erlich, T.J. Hollowood, hep-th/0002076.
[16] J. Garriga, T. Tanaka, hep-th/9911055.
[17] S.B. Giddings, E. Katz, L. Randall, hep-th/0002091.
[18] T. Shiromizu, K. Madea, M. Sasaki, gr-qc/9910076; hep-th/9912233; J. Garriga, M. Sasaki, hep-th/9912118; S. Mukohyama, T. Shiromizu, K. Maeda, hep-th/9912287.
[19] J. Cline, C. Grojean, G. Servant, hep-ph/9909496; C. Grojean, J. Cline, G. Servant, hep-th/9910081; C. Grojean, hep-th/0002130.
[20] W. Muck, K.S. Viswanathan, I.V. Volovich, hep-th/0002132; Y.S. Myung, G. Kang, H.W. Lee, hep-th/0001107; M.G. Ivanov, I.V. Volovich, hep-th/9912242; S. Myung, G. Kang, hep-th/0001003.
[21] V.A. Rubakov, M.E. Shaposhnikov, Phys. Lett. 125B (1983) 139; M. Visser, Phys. Lett. 159B (1985) 22; E.J. Squires, Phys. Lett. B 167 (1986) 286; G.W. Gibbons, D.L. Wiltshire, Nucl. Phys. B 287 (1987) 717; M. Gogberashvili, hep-ph/9812296; hep-ph/9812365; hep-ph/9904383; hep-ph/9908347.
[22] M. Cvetic, S. Griffies, S. Rey, Nucl. Phys. 381 (1992) 301, hep-th/9201007. For a review see: M. Cvetic, H.H. Soleng, Phys. Rep. 282 (1997) 159, hep-th/9604090.
[23] R. Gregory, V.A. Rubakov, S.M. Sibiryakov, hep-th/0002072.
[24] I.I. Kogan, S. Mouslopoulos, A. Papazoglou, G.G. Ross, J. Santiago, hep-ph/9912552.
[25] C. Csáki, J. Erlich, T.J. Hollowood, hep-th/0002161.
[26] G. Dvali, G. Gabadadze, M. Porrati, hep-th/0002190.
[27] E. Witten, hep-ph/0002297.
[28] H. van Dam, M. Veltman, Nucl. Phys. B 22 (1970) 397; V.I. Zakharov, JETP Lett. 12 (1970) 312.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.