zbMATH — the first resource for mathematics

Measures of linear independence of values of entire transcendental solutions of certain functional equations. (Maße für die lineare Unabhängigkeit von Werten ganz transzendenter Lösungen gewisser Funktionalgleichungen.) (German) Zbl 0961.11022
The prototype for the functions in this paper is \(T_q(x)= \sum^\infty_{n=0} q^{-n(n-1)/2}x^n\). Diophantine results for the values of such functions go back to L. Tschakaloff [Math. Ann. 80, 62-74 (1920; JFM 47.0167.02)] who proved the linear independence of 1, \(T_q(a_1), \dots, T_q (a_l)\) when \(q\) is a sufficiently large integer, \(a_1,\dots,a_l\) are rational and none of the ratios \(a_i/a_j\) with \(i\neq j\) is a power of \(q\). J.-P. Bézivin [Manuscr. Math. 61, 103-129 (1988; Zbl 0644.10025)] treated the more general function \[ f(x)= \sum^\infty_{n=0} \left(\prod^n_{\nu=1} A(\nu) \right)^{-1}x^n. \] Here, \(A(n)=\beta_1 q_1^n+ \cdots+ \beta_rq^n_r\neq 0\) for all \(n\) and \(\beta_1, \dots,\beta_r\) are non-zero rational numbers, \(q_1,\dots, q_r\) are multiplicatively independent algebraic integers forming complete sets of conjugates and with the maximum absolute value of the conjugates in each set greater than 1, and such that the ring of integers in the field \(K=\mathbb{Q} (q_1, \dots,q_r)\) has a prime ideal which contains all the principal ideals \((q_i)\). Let \(a_1, \dots, a_l\) in \(K\) be non-zero and such that the \(a_i/a_j\) with \(i\neq j\) and \(q_1, \dots, q_r\) are multiplicatively independent and suppose each \(a_i/ A(n)\) is rational. Then there is an effective linear independence measure of the shape \[ \bigl|h_0+h_1f(a_1) +\cdots+ h_lf(a_l) \bigr|\geq C_1 \exp \bigl(-C_2(\log H)^{2r/ (r+1)}\bigr) \] where the \(h_i\) are integers and \(0< \max_{1\leq i\leq l}|h_i|\leq H\). As an example, the theorem applies to the function \[ f(x)= \sum^\infty_{n=0} x^n/\bigl( \delta^{n(n+1)/2} B(1) \cdots B(n) \bigr) \] where \(B(n)= \gamma^n_1+ \gamma^n_2+ \gamma^n_3\), the \(\gamma_i\) are the three roots of the cubic \(x^3-x^2 -x-1\), and \(\delta\) is an integer different from 0 and \(\pm 1\). The required properties in this case follow from the fact that the \(\gamma_i\) are conjugate PV-numbers. The proof of the theorem itself is based on the Hilbert-Perron-Skolem method.

11J72 Irrationality; linear independence over a field
11J82 Measures of irrationality and of transcendence
11J91 Transcendence theory of other special functions
Full Text: DOI
[1] Y. Amice,Les nombres p-adiques. Presses Univ. France, 1975. · Zbl 0313.12104
[2] J.-P. Bezivin, Indépendance linéaire des valeurs des solutions transcendantes de certaines équations fonctionnelles. I:Manuscripta Math. 61 (1988), 103–129; II:Acta Arith. 55(1990), 233–240. · Zbl 0644.10025
[3] P. Bundschuh andI. Shiokawa, A measure for the linear independence of certain numbers.Result. Math. 7 (1984), 130–144. · Zbl 0552.10021
[4] J. W. S. CASSELS,An introducion to diophantine approximation. Cambridge University Press, 1957. · Zbl 0077.04801
[5] M. Haas,Lineare Unabhängigkeitsmaße für Werte von ganzen Funktionen, die Differential-q -Differenzengleichungen genügen. Dissertation, Universität Freiburg/Br., 1990. · Zbl 0727.11025
[6] E. Hecke,Vorlesungen über die Theorie der algebraischen Zahlen. Akad. Verlagsgesellschaft, 1923. · JFM 49.0106.10
[7] D. Hilbert, Über die Transzendenz der Zahlene und {\(\pi\)}.Gesammelte Abhandlungen 1, Springer, (1932), 1–4.
[8] M. Katsurada, Linear independence measures for certain numbers.Result. Math. 14 (1988), 318–329. · Zbl 0659.10039
[9] C. P. McCarty, A formula for Tribonacci numbers.Fibonacci Quart. 19 (1981), 391–393. · Zbl 0475.10008
[10] O. Perron,Irrationalzahlen. 2. Aufl. Chelsea Publ. Comp., 1951.
[11] T. N. Shorey andR. Tijdeman,Exponential diophantine equations. Cambridge University Press, 1986.
[12] T. Skolem, Some theorems on irrationality and linear independence.Skand. Mat. Kongr. 11, Trondheim (1949), 77–98.
[13] W. R. Spickerman, Binet’s formula for the Tribonacci sequence.Fibonacci Quart. 20(1982), 118–120. · Zbl 0486.10011
[14] I. Stewart,Galois theory. 2nd ed. Chapman and Hall, 1989. · Zbl 0694.12001
[15] L. Tschakaloff, Arithmetische Eigenschaften der unendlichen Reihe \(\sum\nolimits_{\nu = 0}^\infty {x^\nu } a^{ - \nu (\nu - 1)/2} \) . I:Math Am 80 (1921), 62–74; II:Math Am 84 (1921), 100–114. · JFM 48.0196.02
[16] K. Väänänen undR. Wallisser, Zu einem Satz von Skolem über lineare Unabhängigkeit von Werten gewisser Thetareihen.Manuscripta Math. 65 (1989), 199–212. · Zbl 0685.10025
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.