×

zbMATH — the first resource for mathematics

When do Toeplitz and Hankel operators commute? (English) Zbl 0961.47015
The author shows that non-trivial Toeplitz (\(T_\psi\)) and Hankel (\(H_\varphi\)) operators commute if and only if the symbol \(\varphi\) of Hankel operator is \(z\psi (z)\), where \(\psi(z)=a\xi (z)+b\), \(a\neq 0\) and \(\xi (z)\) is the characteristic function of certain “anti-symmetric” sets of the unit circle.

MSC:
47B35 Toeplitz operators, Hankel operators, Wiener-Hopf operators
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] A. Brown, P. R. Halmos,Algebraic properties of Toeplitz Operators, J. Reigne Angew. Math.,213 (1963/1964), 89-102. · Zbl 0116.32501
[2] P. Hartman, A. Wintner,On the spectrum of Toeplitz matrices, Amer. J. Math.,72 (1950), 359-366. · Zbl 0035.35903
[3] Z. Nehari,On bounded bilinear forms. Ann. of Math.,65 (1957), 153-162. · Zbl 0077.10605
[4] S. Power,Hankel Operators on Hilbert Space, Bull. London Math. Soc.,12 (1980), 422-442. · Zbl 0446.47015
[5] S. Power, ?Hankel Operators on Hilbert Space,? Pittman Publishing, Boston, 1982.
[6] D. Sarason,Holomorphic spaces: a brief and selective survey, in ?Holomorphic Spaces (Berkeley), CA, 1995)?, 1-34, Math. Sci. Res. Inst. Publ. 33, Cambridge Univ. Press, Cambridge, 1998. · Zbl 1128.47312
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.