×

zbMATH — the first resource for mathematics

4D gravity on a brane in 5D Minkowski space. (English) Zbl 0961.83045
Summary: We suggest a mechanism by which four-dimensional Newtonian gravity emerges on a 3-brane in 5D Minkowski space with an infinite size extra dimension. The worldvolume theory gives rise to the correct 4D potential at short distances whereas at large distances the potential is that of a 5D theory. We discuss some phenomenological issues in this framework.

MSC:
83E15 Kaluza-Klein and other higher-dimensional theories
81T30 String and superstring theories; other extended objects (e.g., branes) in quantum field theory
83E30 String and superstring theories in gravitational theory
PDF BibTeX XML Cite
Full Text: DOI arXiv
References:
[1] N. Arkani-Hamed, S. Dimopoulos, G. Dvali, Phys. Lett. B 429 (1998) 263; Phys. Rev. D 59 (1999) 0860; I. Antoniadis, N. Arkani-Hamed, S. Dimopoulos, G. Dvali, Phys. Lett. B 436 (1998) 257.
[2] L. Randall, R. Sundrum, Phys. Rev. Lett. 83 (1999) 3370; Phys. Rev. Lett. 83 (1999) 4690.
[3] G. Dvali, G. Gabadadze, M. Porrati, hep-th/0002190.
[4] E. Witten, hep-ph/0002297.
[5] Dvali, G.; Shifman, M., Nucl. phys. B, 504, 127, (1997)
[6] G. Dvali, hep-th/0004057.
[7] R. Gregory, V.A. Rubakov, S.M. Sibiryakov, hep-th/0002072.
[8] C. Csáki, J. Erlich, T.J. Hollowood, hep-th/0002161.
[9] G. Dvali, G. Gabadadze, M. Porrati, hep-th/0003054.
[10] I. Kogan, G.G. Ross, hep-th/0003074.
[11] G. Kang, Y.S. Myung, hep-th/0003162.
[12] L. Pilo, R. Rattazzi, A. Zaffaroni, hep-th/0004028.
[13] C. Csáki, J. Erlich, T.J. Hollowood, hep-th/0003020.
[14] R. Gregory, V.A. Rubakov, S.M. Sibiryakov, hep-th/0003045.
[15] Capper, D.M., Nuovo cim. A, 25, 29, (1975)
[16] S.L. Adler, Phys. Rev. Lett. 44 (1980) 1567; Phys. Lett. B 95 (1980) 241; Rev. Mod. Phys. 54 (1982) 729; Rev. Mod. Phys. 55 (1983) 837 (E).
[17] Zee, A., Phys. rev. lett., 48, 295, (1982)
[18] N.N. Khuri, Phys. Rev. Lett. 49 (1982) 513; Phys. Rev. D 26 (1982) 2664.
[19] van Dam, H.; Veltman, M., Nucl. phys. B, 22, 397, (1970)
[20] Zakharov, V.I., JETP lett., 12, 312, (1970)
[21] J. Garriga, T. Tanaka, hep-th/9911055.
[22] S.B. Giddings, E. Katz, L. Randall, hep-th/0002091.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.