To a transformation theory of two-dimensional integrable systems. (English) Zbl 0962.37509

Summary: We generalise to the two-dimensional case a list of integrable Toda type lattice equations. As a result, \(1+2\) dimensional systems similar to the Davey-Stewartson coupled system are obtained together with explicit auto-Bäcklund transformations and 2D Miura type transformations.


37K10 Completely integrable infinite-dimensional Hamiltonian and Lagrangian systems, integration methods, integrability tests, integrable hierarchies (KdV, KP, Toda, etc.)
35Q58 Other completely integrable PDE (MSC2000)
Full Text: DOI


[1] Shabat, A.B.; Yamilov, R.I., Algebra i analiz, Leningrad math. J., 2, 377, (1991), English transl. in
[2] Shabat, A.B.; Yamilov, R.I., Phys. lett. A, 130, 271, (1988)
[3] Leznov, A.N.; Shabat, A.B.; Yamilov, R.I., Phys. lett. A, 174, 397, (1993)
[4] Mikhailov, A.V.; Shabat, A.B.; Yamilov, R.I., Usp. mat. nauk, Russian math. surveys, 42, 1, (1987), English transl. in
[5] Mikhailov, A.V.; Shabat, A.B.; Yamilov, R.I., Commun. math. phys., 115, 1, (1988)
[6] Yamilov, R.I., Generalizations of the Toda model, and conservation laws, (), 423-431, (1989), Institute of Mathematics Ufa, in Russian; English version in:
[7] Ueno, K.; Takasaki, K., Adv. stud. pure math., 4, 1, (1984)
[8] E.V. Ferapontov, Laplace transformations of hydrodynamical type systems in Riemann invariants, Theor. Math. Phys., to be published. · Zbl 0919.35132
[9] Mikhailov, A.V.; Mikhailov, A.V., Pis’ma zh. eksp. teor. fiz., JETP lett., 30, 414, (1979)
[10] Levi, D., J. phys. A, 14, 1083, (1981)
[11] Kaup, D.J., Progr. theor. phys., 54, 72, (1975)
[12] Chen, H.H.; Lee, Y.C.; Liu, C.S., Phys. scr., 20, 490, (1979)
[13] Konopelchenko, B.G., Phys. lett. A, 92, 323, (1982)
[14] Yamilov, R.I., Phys. lett. A, 173, 53, (1993)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.