Martel, Yvan; Merle, Frank A Liouville theorem for the critical generalized Korteweg-de Vries equation. (English) Zbl 0963.37058 J. Math. Pures Appl. (9) 79, No. 4, 339-425 (2000). This paper deals with the equation \[ \begin{cases} u_t+(u_{xx}+ u^5)_x= 0,\quad & (t,x)\in\mathbb{R}_+\times\mathbb{R}\\ u(x,0)=u_0(x), \quad x\in\mathbb{R}\end{cases} \tag{1} \] for \(u_0\in H^1(\mathbb{R})\). The authors present a surprising rigidity result on the flow of (1) close to a soliton up to scaling and translation. For a proof of this result the authors introduce new techniques which will give a result of asymptotic completeness. Reviewer: Messoud Efendiev (Berlin) Cited in 6 ReviewsCited in 67 Documents MSC: 37K10 Completely integrable infinite-dimensional Hamiltonian and Lagrangian systems, integration methods, integrability tests, integrable hierarchies (KdV, KP, Toda, etc.) 35Q53 KdV equations (Korteweg-de Vries equations) 37K40 Soliton theory, asymptotic behavior of solutions of infinite-dimensional Hamiltonian systems Keywords:Liouville theorem; KdV equation; asymptotic completeness; rigidity PDF BibTeX XML Cite \textit{Y. Martel} and \textit{F. Merle}, J. Math. Pures Appl. (9) 79, No. 4, 339--425 (2000; Zbl 0963.37058) Full Text: DOI OpenURL