×

zbMATH — the first resource for mathematics

On the stability of functional equations in Banach spaces. (English) Zbl 0964.39026
The paper is a survey of results concerning the stability of additive functional equation, exponential functional equation, quadratic functional equation, d’Alembert equation, and few other trigonometric functional equations in Banach spaces. This paper contains an impressive list of references.

MSC:
39B82 Stability, separation, extension, and related topics for functional equations
39B52 Functional equations for functions with more general domains and/or ranges
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Alzer, H, Remark on the stability of the gamma functional equation, Results math., 35, 199-200, (1999) · Zbl 0929.39014
[2] Baker, J, The stability of the cosine equation, Proc. amer. math. soc., 80, 411-416, (1980) · Zbl 0448.39003
[3] Baker, J; Lawrence, J; Zorzitto, F, The stability of the equation f(x+y)=f(x)f(y), Proc. amer. math. soc., 74, 242-246, (1979) · Zbl 0397.39010
[4] Borelli, C, On hyers – ulam stability of hosszú’s functional equation, Results math., 26, 221-224, (1994) · Zbl 0828.39019
[5] Borelli, C; Forti, G.L, On a general hyers – ulam stability result, Internat. J. math. math. sci., 18, 229-236, (1995) · Zbl 0826.39009
[6] Brzd\( ȩ\)k, J, A note on stability of additive mappings, (), 19-22
[7] Cholewa, P.W, The stability of the sine equation, Proc. amer. math. soc., 88, 631-634, (1983) · Zbl 0547.39003
[8] Cholewa, P.W, Remarks on the stability of functional equations, Aequationes math., 27, 76-86, (1984) · Zbl 0549.39006
[9] Czerwik, S, On the stability of the quadratic mapping in normed spaces, Abh. math. sem. univ. Hamburg, 62, 59-64, (1992) · Zbl 0779.39003
[10] Czerwik, S, On the stability of the homogeneous mapping, C. R. math. rep. acad. sci. Canada, 14, 268-272, (1992) · Zbl 0795.39006
[11] Fenyö, I, On an inequality of P. W. cholewa, (), 277-280
[12] Förg-Rob, W; Schwaiger, J, On the stability of a system of functional equations characterizing generalized hyperbolic and trigonometric functions, Aequationes math., 45, 285-296, (1993) · Zbl 0774.39007
[13] Förg-Rob, W; Schwaiger, J, On the stability of some functional equations for generalized hyperbolic functions and for the generalized cosine equation, Results math., 26, 274-280, (1994) · Zbl 0829.39010
[14] Forti, G.L, The stability of homomorphisms and amenability, with applications to functional equations, Abh. math. sem. univ. Hamburg, 57, 215-226, (1987) · Zbl 0619.39012
[15] Forti, G.L, Hyers – ulam stability of functional equations in several variables, Aequationes math., 50, 143-190, (1995) · Zbl 0836.39007
[16] Forti, G.L; Schwaiger, J, Stability of homomorphisms and completeness, C. R. math. rep. acad. sci. Canada, 11, 215-220, (1989) · Zbl 0697.39013
[17] Gajda, Z, On stability of the Cauchy equation on semigroups, Aequationes math., 36, 76-79, (1988) · Zbl 0658.39006
[18] Gajda, Z, On stability of additive mappings, Internat. J. math. math. sci., 14, 431-434, (1991) · Zbl 0739.39013
[19] Gǎvruta, P, A generalization of the hyers – ulam – rassias stability of approximately additive mappings, J. math. anal. appl., 184, 431-436, (1994) · Zbl 0818.46043
[20] Gǎvruta, P, On the stability of some functional equations, (), 93-98 · Zbl 0844.39007
[21] Ger, R, Stability of addition formulae for trigonometric mappings, Zeszyty nauk. politech. slasiej ser. mat. fiz., 64, 75-84, (1990) · Zbl 0741.39010
[22] Ger, R, The singular case in the stability behavior of linear mappings, Grazer math. ber., 316, 59-70, (1991) · Zbl 0796.39012
[23] Ger, R, On functional inequalities stemming from stability questions, (), 227-240 · Zbl 0770.39007
[24] Ger, R, Superstability is not natural, Rocznik nauk.-dydakt. prace mat., 159, 109-123, (1993) · Zbl 0964.39503
[25] Ger, R; Šemrl, P, The stability of the exponential equation, Proc. amer. math. soc., 124, 779-787, (1996) · Zbl 0846.39013
[26] Hyers, D.H, On the stability of the linear functional equation, Proc. nat. acad. sci. U.S.A., 27, 222-224, (1941) · Zbl 0061.26403
[27] Hyers, D.H; Isac, G; Rassias, Th.M, Stability of functional equations in several variables, (1998), Birkhäuser Basel · Zbl 0894.39012
[28] Hyers, D.H; Isac, G; Rassias, Th.M, On the asymptoticity aspect of hyers – ulam stability of mappings, Proc. amer. math. soc., 126, 425-430, (1998) · Zbl 0894.39012
[29] Hyers, D.H; Rassias, Th.M, Approximate homomorphisms, Aequationes math., 44, 125-153, (1992) · Zbl 0806.47056
[30] Isac, G; Rassias, Th.M, On the hyers – ulam stability of ψ-additive mappings, J. approx. theory, 72, 131-137, (1993) · Zbl 0770.41018
[31] Isac, G; Rassias, Th.M, Functional inequalities for approximately additive mappings, (), 117-125 · Zbl 0844.39015
[32] Jarosz, K, Perturbations of Banach algebras, Lecture notes in mathematics, 1120, (1985), Springer-Verlag Berlin
[33] Johnson, B.E, Approximately multiplicative functionals, J. London math. soc. (2), 34, 489-510, (1986) · Zbl 0625.46059
[34] Johnson, B.E, Approximately multiplicative maps between Banach algebras, J. London math. soc. (2), 37, 294-316, (1988) · Zbl 0652.46031
[35] Jung, S.-M, On the hyers – ulam – rassias stability of approximately additive mappings, J. math. anal. appl., 204, 221-226, (1996) · Zbl 0888.46018
[36] S.-M. Jung, On the stability of the functional equation for exponential functions, manuscript.
[37] Jung, S.-M, Hyers – ulam – rassias stability of functional equations, Dynam. systems appl., 6, 541-566, (1997) · Zbl 0891.39025
[38] Jung, S.-M, On the superstability of the functional equation f(xy)=yf(x), Abh. math. sem. univ. Hamburg, 67, 315-322, (1997) · Zbl 0890.39022
[39] Jung, S.-M, On the modified hyers – ulam – rassias stability of the functional equation for gamma function, Mathematica, 39, 235-239, (1997)
[40] Jung, S.-M, On a general hyers – ulam stability of gamma functional equation, Bull. Korean math. soc., 34, 437-446, (1997) · Zbl 0965.39023
[41] Jung, S.-M, On the stability of gamma functional equation, Results math., 33, 306-309, (1998) · Zbl 0907.39027
[42] Jung, S.-M, Hyers – ulam – rassias stability of Jensen’s equation and its application, Proc. amer. math. soc., 126, 3137-3143, (1998) · Zbl 0909.39014
[43] Jung, S.-M, On the hyers – ulam stability of the functional equations that have the quadratic property, J. math. anal. appl., 222, 126-137, (1998) · Zbl 0928.39013
[44] Jung, S.-M, On the stability of the functional equation f(xy)=f(x)y, Mathematica, 40, 89-94, (1998) · Zbl 1281.39013
[45] Jung, S.-M, On a modified hyers – ulam stability of homogeneous equation, Internat. J. math. math. sci., 21, 475-478, (1998) · Zbl 0907.39028
[46] Jung, S.-M, Superstability of homogeneous functional equation, Kyungpook math. J., 38, 251-257, (1998) · Zbl 0929.39013
[47] S.-M. Jung, On an asymptotic behavior of exponential functional equation, Studia Univ. Babes-Bolyai, in press.
[48] Jung, S.-M, On the superstability of the functional equation f(xy)=f(x)y, (), 119-124 · Zbl 0978.39022
[49] S.-M. Jung, On the Hyers-Ulam-Rassias stability of functional equations, Math. Inequalities Appl, in press. · Zbl 0891.39025
[50] Jung, S.-M, Hyers – ulam – rassias stability of functional equations in mathematical analysis, (2000), Hadronic Press
[51] Jung, S.-M; Kim, B, On the stability of the quadratic functional equation on bounded domains, Abh. math. sem. univ. Hamburg, 69, 293-308, (1999) · Zbl 0952.39010
[52] Kominek, Z, On a local stability of the Jensen functional equation, Demonstratio math., 22, 499-507, (1989) · Zbl 0702.39007
[53] Losonczi, L, On the stability of hosszú’s functional equation, Results math., 29, 305-310, (1996) · Zbl 0872.39017
[54] Maksa, G, Problems 18, in report on the 34th ISFE, Aequationes math., 53, 194, (1997)
[55] Páles, Z, Remark 27, in report on the 34th ISFE, Aequationes math., 53, 200-201, (1997)
[56] Rassias, J.M, On approximation of approximately linear mappings, J. funct. anal., 46, 126-130, (1982) · Zbl 0482.47033
[57] Rassias, J.M, On a new approximation of approximately linear mappings by linear mappings, Discuss. math., 7, 193-196, (1985) · Zbl 0592.46004
[58] Rassias, Th.M, On the stability of the linear mapping in Banach spaces, Proc. amer. math. soc., 72, 297-300, (1978) · Zbl 0398.47040
[59] Rassias, Th.M, The stability of mappings and related topics, in report on the 27th ISFE, Aequationes math., 39, 292-293, (1990)
[60] Rassias, Th.M, On a modified hyers – ulam sequence, J. math. anal. appl., 158, 106-113, (1991) · Zbl 0746.46038
[61] Rassias, Th.M, Problem 18, in report on the 31st ISFE, Aequationes math., 47, 312-313, (1994)
[62] Rassias, Th.M, On a problem of S. M. Ulam and the asymptotic stability of the Cauchy functional equation with applications, Internat. ser. numer. math., 123, 297-309, (1997) · Zbl 0880.39023
[63] Th. M. Rassias, On the stability of the quadratic functional equation, Mathematica, in press. · Zbl 1281.39036
[64] Th. M. Rassias, On the stability of functional equations originated by a problem of Ulam, Studia Univ. Babes-Bolyai, in press.
[65] Th. M. Rassias, On the stability of functional equations and a problem of Ulam, Acta Appl. Math, in press.
[66] Rassias, Th.M; Šemrl, P, On the behavior of mappings which do not satisfy hyers – ulam stability, Proc. amer. math. soc., 114, 989-993, (1992) · Zbl 0761.47004
[67] Rassias, Th.M; Šemrl, P, On the hyers – ulam stability of linear mappings, J. math. anal. appl., 173, 325-338, (1993) · Zbl 0789.46037
[68] Rassias, Th.M; Tabor, J, What is left of hyers – ulam stability?, J. natur. geom., 1, 65-69, (1992) · Zbl 0757.47032
[69] Rassias, Th.M; Tabor, J, On approximately additive mappings in Banach spaces, (), 127-134 · Zbl 0845.39013
[70] Rätz, J, On approximately additive mappings, (), 233-251
[71] Šemrl, P, The functional equation of multiplicative derivation is superstable on standard operator algebras, Integral equations oper. theory, 18, 118-122, (1994) · Zbl 0810.47029
[72] Šemrl, P, The stability of approximately additive functions, (), 135-140 · Zbl 0844.39005
[73] Skof, F, Sull’approssimazione delle applicazioni localmente δ-additive, Atti accad. sci. Torino, 117, 377-389, (1983)
[74] Skof, F, Proprietá locali e approssimazione di operatori, Rend. sem. mat. fis. milano, 53, 113-129, (1983)
[75] Skof, F, Approssimazione di funzioni δ-quadratiche su dominio ristretto, Atti accad. sci. Torino cl. sci. fis. mat. natur., 118, 58-70, (1984)
[76] Skof, F; Terracini, S, Sulla stabilità dell’equazione funzionale quadratica su un dominio ristretto, Atti accad. sci. Torino cl. sci. fis. mat. natur., 121, 153-167, (1987)
[77] Székelyhidi, L, On a theorem of Baker, Lawrence and zorzitto, Proc. amer. math. soc., 84, 95-96, (1982) · Zbl 0485.39003
[78] Székelyhidi, L, Note on a stability theorem, Canad. math. bull., 25, 500-501, (1982) · Zbl 0505.39002
[79] Székelyhidi, L, The stability of the sine and cosine functional equations, Proc. amer. math. soc., 110, 109-115, (1990) · Zbl 0718.39004
[80] Tabor, J, On functions behaving like additive functions, Aequationes math., 35, 164-185, (1988) · Zbl 0652.39013
[81] Tabor, J, Quasi-additive functions, Aequationes math., 39, 179-197, (1990) · Zbl 0708.39005
[82] Tabor, J, Hosszú’s functional equation on the unit interval is not stable, Publ. math. debrecen, 49, 335-340, (1996) · Zbl 0870.39012
[83] Tabor, J, Remark 20, in report on the 34th ISFE, Aequationes math., 53, 194-196, (1997)
[84] Tabor, J; Tabor, J, Homogeneity is superstable, Publ. math. debrecen, 45, 123-130, (1994) · Zbl 0823.39008
[85] Ulam, S.M, A collection of mathematical problems, (1960), Interscience New York · Zbl 0086.24101
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.