×

zbMATH — the first resource for mathematics

On feedback anticontrol of discrete chaos. (English) Zbl 0964.93039
The very purpose of this note is to prove that the algorithm of Chen and Lai for the anticontrol of chaos leads to chaos not only in the sense of Devaney but also in the sense of Li and Yorke, for both linear and nonlinear autonomous systems of any dimension.

MSC:
93C10 Nonlinear systems in control theory
37D45 Strange attractors, chaotic dynamics of systems with hyperbolic behavior
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] DOI: 10.1109/81.633897 · doi:10.1109/81.633897
[2] Bollt E., Int. J. Bifurcation and Chaos, to appear. (1999)
[3] Chen G., IEEE Circuits Syst. Soc. Newsletter 1998 pp 1– (1998)
[4] DOI: 10.1063/1.532670 · Zbl 0959.37027 · doi:10.1063/1.532670
[5] DOI: 10.1142/S021812749600076X · Zbl 0875.93157 · doi:10.1142/S021812749600076X
[6] Chen G., Proc. IEEE Conf. Decison and Control, San Diego, CA pp 367– (1997)
[7] DOI: 10.1142/S0218127498001236 · Zbl 0941.93522 · doi:10.1142/S0218127498001236
[8] Chen L., Physica 104 pp 286– (1997)
[9] Holzfuss J., Arnold, L., Crauel, H. & Eckmann, J.-P. (1991)
[10] DOI: 10.2307/2318254 · Zbl 0351.92021 · doi:10.2307/2318254
[11] DOI: 10.1016/0022-247X(78)90115-4 · Zbl 0381.58004 · doi:10.1016/0022-247X(78)90115-4
[12] DOI: 10.3792/pjaa.55.286 · Zbl 0451.58031 · doi:10.3792/pjaa.55.286
[13] DOI: 10.1080/00207178308933126 · Zbl 0525.93046 · doi:10.1080/00207178308933126
[14] DOI: 10.1016/0020-7462(85)90025-3 · Zbl 0632.93050 · doi:10.1016/0020-7462(85)90025-3
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.