Multiple solutions for \(2m\)th order Sturm-Liouville boundary value problems on a measure chain. (English) Zbl 0965.39008

Existence criteria for boundary value problem of the form \[ (-1)^m u^{(2m)}= f(t,u(t)),\quad t\in[0,1], \] \(\alpha_{i+1} u^{(2i)}(0)- \beta_{i+1} u^{(2i+ 1)}(0)= 0= \gamma_{i+1} u^{(2i)}(1)+ \delta_{i+1} u^{(2i+1)}(1)\), \(0\leq i\leq m+1\), have been investigated to some extent. In this paper, similar boundary value problems of the form \[ (-1)^m u^{\Delta^{2m}}= f(t, u(\sigma(t))),\quad t\in [0, 1], \]
\[ \alpha_{i+1} u^{\Delta^{2i}}(0)- \beta_{i+1} u^{\Delta^{2i+1}}(0)= 0= \gamma_{i+1} u^{\Delta^{2i}}(\sigma(1))+ \delta_{i+1} u^{\Delta^{2i+1}}(\sigma(1)),\quad 0\leq i\leq m+1, \] are studied, where \(\sigma(t)= \inf\{\tau\in T\mid\tau> t\}\) and \(u^\Delta(t)= (x(\sigma(t))- x(t))/(\sigma(t)- t)\), and the so-called measure chain \(T\) is a nonempty closed subset of \(\mathbb{R}\) containing \(0\) and \(1\). By means of Krasnosel’skii fixed point theorem and various properties of the Green’s function associated to the corresponding homogeneous problem, existence of positive solutions are established under several standard assumptions on \(f\).


39A12 Discrete version of topics in analysis
34B15 Nonlinear boundary value problems for ordinary differential equations
34B24 Sturm-Liouville theory
Full Text: DOI


[1] Agarwal R.P., Results Math 35 pp 3– (1999)
[2] Agarwal, R.P., O’Regan, D. and Wong, P.J.Y. 1999. ”Positive Solutions of Differential Difference and Integral Equations”. Edited by: Dordrecht: Kluwer Academic.
[3] Anderson D., Positivity of Green’s functions for an n-point right focal boundary value problem on a measure chain · Zbl 1042.39504
[4] DOI: 10.1080/10236199508808026 · Zbl 0854.39001
[5] Atici F., PanAmer. Math. J 5 pp 71– (1995)
[6] Aulback B., Nonlinear Dynamics and Quantum Dynamical Systems, Math, Res 59 (1990)
[7] Avery R.I., PanAmer. Math. J 8 pp 39– (1998)
[8] Avery R.I., PanAmer.Math.J 8 pp 1– (1998)
[9] Chyan C.J., Tamkang J. Math 30 (1999)
[10] Chyan C.J., Multiple solutions for 2mth order Sturm-Liouville boundary value problems · Zbl 0958.34018
[11] Davis J.M., Multiplicity of positive solutions for higher order Sturm-Liouville problems · Zbl 0989.34012
[12] Erbe L.H., Diff.Eqns. Dynam. Sys 1 pp 223– (1993)
[13] DOI: 10.1006/jmaa.1994.1227 · Zbl 0805.34021
[14] DOI: 10.3934/dcds.2000.6.121 · Zbl 1034.35128
[15] Erbe L.H., Eigenvalue conditions and Positive solutions · Zbl 0949.34015
[16] Erbe L.H., Diff. Eqns. Dynam. Sys 4 pp 313– (1996)
[17] DOI: 10.1090/S0002-9939-1994-1204373-9
[18] Hilger S., Resultate Math 18 pp 18– (1990) · Zbl 0722.39001
[19] DOI: 10.1216/rmjm/1181071751 · Zbl 0930.34010
[20] Kaymakcalan, B., Lakshmikantham, V. and Sivasundaram, S. 1996. ”Dynamical Systems on Measure Chains”. Edited by: Boston: Kluwer Academic. · Zbl 0869.34039
[21] Kaymakcalan, B. 1994. ”Positive Solution of Operator Equation”. Edited by: Groningen: Noordhoof.
[22] DOI: 10.1512/iumj.1979.28.28046 · Zbl 0421.47033
[23] DOI: 10.1090/S0002-9939-96-03403-X · Zbl 0857.34036
[24] DOI: 10.1006/jdeq.1994.1042 · Zbl 0798.34030
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.