zbMATH — the first resource for mathematics

Chaotic dynamics, fluctuations, nonequilibrium ensembles. (English) Zbl 0965.82011
Summary: The ideas and the conceptual steps leading from the ergodic hypothesis for equilibrium statistical mechanics to the chaotic hypothesis for equilibrium and nonequilibrium statistical mechanics are illustrated. The fluctuation theorem linear law and universal slope prediction for reversible systems is briefly derived. Applications to fluids are briefly alluded to.

82C03 Foundations of time-dependent statistical mechanics
37A60 Dynamical aspects of statistical mechanics
82C05 Classical dynamic and nonequilibrium statistical mechanics (general)
37D45 Strange attractors, chaotic dynamics of systems with hyperbolic behavior
Full Text: DOI
[1] DOI: 10.1063/1.881363
[2] DOI: 10.1007/BF01389848 · Zbl 0311.58010
[3] DOI: 10.1007/BF01389848 · Zbl 0311.58010
[4] DOI: 10.1007/BF01389848 · Zbl 0311.58010
[5] DOI: 10.1103/PhysRevE.53.1485
[6] DOI: 10.1103/PhysRevE.53.1485
[7] DOI: 10.1103/PhysRevE.53.1485
[8] DOI: 10.1103/PhysRevLett.71.2401 · Zbl 0966.82507
[9] DOI: 10.1103/PhysRevLett.74.2694
[10] DOI: 10.1103/PhysRevLett.74.2694
[11] DOI: 10.1070/RM1972v027n04ABEH001383
[12] DOI: 10.1090/S0002-9947-1973-0335758-1
[13] DOI: 10.1515/form.10.1.89 · Zbl 0894.58034
[14] DOI: 10.1007/3-540-59178-8_34
[15] DOI: 10.1007/BF02175553 · Zbl 0973.37014
[16] Gallavotti G., Math. Phys. Electron. J. 1 pp 1– (1995)
[17] DOI: 10.1007/BF02183611 · Zbl 0935.82041
[18] J. Kurchan, ”Fluctuation Theorem for stochastic dynamics,” preprint chao-dyn@xyz.lanl.gov, #chao-dyn/9709304. · Zbl 0910.60095
[19] DOI: 10.1016/S0167-2789(97)00007-9 · Zbl 1038.82050
[20] DOI: 10.1103/PhysRevLett.77.4334 · Zbl 1063.82533
[21] DOI: 10.1007/s002200050241 · Zbl 0909.60091
[22] DOI: 10.1007/s002200050134 · Zbl 0895.58045
[23] G. Gallavotti, ”Fluctuation patterns and conditional reversibility in non-equilibrium systems,” in print on Annales de l’ Institut H. PoincarĂ©, chao-dyn@ xyz. lanl. gov #chao-dyn/9703007.
[24] DOI: 10.1016/S0375-9601(96)00729-3 · Zbl 1037.76508
[25] DOI: 10.1016/S0375-9601(96)00729-3 · Zbl 1037.76508
[26] DOI: 10.1007/s002200050200 · Zbl 0896.70006
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.