×

Probability of second law violations in shearing steady states. (English) Zbl 0966.82507

Phys. Rev. Lett. 71, No. 15, 2401-2494 (1993); erratum ibid. 71, No. 21, 3616 (1993).
Summary: We propose a new definition of natural invariant measure for trajectory segments of finite duration for a many-particle system. On this basis we give an expression for the probability of fluctuations in the shear stress of a fluid in a nonequilibrium steady state far from equilibrium. In particular we obtain a formula for the ratio that, for a finite time, the shear stress reverse sign, violating the second law of thermodynamics. Computer simulations support this formula.

MSC:

82C05 Classical dynamic and nonequilibrium statistical mechanics (general)
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] W. G. Hoover, Phys. Lett. A 123 pp 227– (1987)
[2] H. A. Posch, Phys. Rev. A 38 pp 473– (1988)
[3] H. A. Posch, Phys. Rev. A 39 pp 2175– (1989)
[4] G. P. Morriss, Phys. Lett. A 134 pp 307– (1989)
[5] D. J. Evans, Phys. Rev. A 42 pp 5990– (1990)
[6] S. Sarman, Phys. Rev. A 45 pp 2233– (1992)
[7] W. G. Hoover, Phys. Lett. A 133 pp 114– (1988)
[8] P. Gaspard, J. Chem. Phys. 90 pp 2225– (1989)
[9] P. Gaspard, J. Chem. Phys. 90 pp 2242– (1989)
[10] P. Gaspard, J. Chem. Phys. 90 pp 2255– (1989)
[11] P. Gaspard, Phys. Rev. Lett. 65 pp 1693– (1990) · Zbl 1050.82547
[12] R. Artuso, Nonlinearity 3 pp 325– (1990) · Zbl 0702.58064
[13] P. Gaspard, in: Microscopic Simulations of Complex Hydrodynamical Phenomena
[14] P. Cvitanović, Chaos 2 pp 85– (1992) · Zbl 1055.82503
[15] W. N. Vance, Phys. Rev. Lett. 69 pp 1356– (1992)
[16] A. Baranyai, J. Stat. Phys. 70 pp 1085– (1993) · Zbl 0943.82580
[17] J.-P. Eckmann, Rev. Mod. Phys. 57 pp 617– (1985) · Zbl 0989.37516
[18] J.-P. Eckmann, Phys. Rev. A 34 pp 659– (1986)
[19] D. J. Evans, in: Statistical Mechanics of Nonequilibrium Liquids (1990) · Zbl 1145.82301
[20] J. P. Dyre, Phys. Rev. A 40 pp 2207– (1989)
[21] G. N. Bochkov, Sov. Phys. JETP 45 pp 125– (1977)
[22] , Physica (Amsterdam) 106A pp 443– (1981)
[23] D. A. McQuarrie, in: Statistical Mechanics (1976)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.