×

zbMATH — the first resource for mathematics

Ambiguous games. (English) Zbl 0966.91002
The author introduces ambiguous games, a modification of the normal form in which a suitable ambiguity functional is added to parametrize the impact of ambiguity in the interaction and strategic behavior. A detailed motivation of ambiguous games(with examples) is added in this paper. The author also presents the associated equilibrium concept and a general existence result.

MSC:
91A10 Noncooperative games
91A40 Other game-theoretic models
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Aumann, R., Correlated equilibrium as an expression of Bayesian rationality, Econometrica, 55, 1-18, (1987) · Zbl 0633.90094
[2] Aumann, R., Nash equilibria are not self-enforcing, (), 201-206
[3] Aumann, R.; Brandenburger, A., Epistemic conditions for Nash equilibrium, Econometrica, 63, 1161-1180, (1995) · Zbl 0841.90125
[4] Bewley, T. F. 1986, Knightian Decision Theory: Part I, Discussion Paper 807, Cowles Foundation, Yale University.
[5] Camerer, C., Individual decision making, () · Zbl 0942.91021
[6] Carlsson, H.; van Damme, E., Equilibrium selection in stag hunt games, (), 237-253 · Zbl 0807.90138
[7] Choquet, G., Theory of capacities, Ann. inst. Fourier, 5, 131-295, (1953) · Zbl 0064.35101
[8] Crawford, V., Equilibrium without independence, J. econom. theory, 50, 127-154, (1990) · Zbl 0689.90075
[9] Crawford, V. 1995, Theory and Experiment in the Analysis of Strategic Interaction, mimeo, University of California-San Diego.
[10] de Finetti, B., Sul significato soggettivo Della probabilità, Fund. math., 17, 298-329, (1931) · JFM 57.0608.07
[11] de Finetti, B., La prevision: ses lois logiques, ses sources subjectives, Ann. inst. Poincaré, 7, 1—68, (1937) · JFM 63.1070.02
[12] Dekel, E.; Safra, Z.; Segal, U., Existence and dynamic consistency of Nash equilibrium with non-expected utility preferences, J. econom. theory, 55, 229-246, (1991) · Zbl 0749.90091
[13] Dow, J.; Werlang, S., Uncertainty aversion, risk aversion, and the optimal choice of portfolio, Econometrica, 60, 197-204, (1992) · Zbl 0756.90002
[14] Dow, J.; Werlang, S., Nash equilibrium under Knightian uncertainty: breaking down backward induction, J. econom. theory, 64, 305-324, (1994) · Zbl 0813.90132
[15] Eichberger, J.; Kelsey, D., Non-additive beliefs and strategic equilibria, Games econom. behav., 30, 183-215, (2000) · Zbl 0962.91002
[16] Eichberger, J.; Kelsey, D., Uncertainty aversion and preference for randomization, J. econom. theory, 71, 31-43, (1996) · Zbl 0864.90007
[17] Ellsberg, D., Risk, ambiguity, and the savage axioms, Quart. J. econom., 75, 643-669, (1961) · Zbl 1280.91045
[18] Epstein, L.G., Preference, rationalizability and equilibrium, J. econom. theory, 73, 1-29, (1997) · Zbl 0886.90193
[19] Farrell, J., Cheap talk, coordination, and entry, Rand J. econom., 18, 34-39, (1987)
[20] Fishburn, P.C., The axioms and algebra of ambiguity, Theory and decision, 34, 119-137, (1993) · Zbl 0780.90004
[21] Ghirardato, P.; Le Breton, M., Choquet rationality, J. econ. theory, (1997) · Zbl 1038.91521
[22] Ghirardato, P.; Klibanoff, P.; Marinacci, M., Additivity with multiple priors, J. math. econom., 30, 405-420, (1998) · Zbl 0942.91023
[23] Gilboa, I., Expected utility with purely subjective non-additive probabilities, J. math. econom., 16, 65-88, (1987) · Zbl 0632.90008
[24] Gilboa, I.; Schmeidler, D., Maxmin expected utility with a non-unique prior, J. math. econom., 18, 141-153, (1989) · Zbl 0675.90012
[25] Klibanoff, P. 1993, Uncertainty, Decision and Normal Form Games, mimeo, MIT.
[26] Klibanoff, P. 1996, Characterizing Uncertainty Aversion through Preference for Mixtures, CMSEMS Discussion Paper 1159, Northwestern University.
[27] Knight, F.H., Risks, uncertainty, and profit, (1921), Houghton-Mifflin Boston
[28] Kreps, D.M., Game theory and economic modelling, (1990), Oxford Univ. Press Oxford
[29] Lo, K.C., Equilibrium in beliefs under uncertainty, J. econom. theory, 71, 443-484, (1996) · Zbl 0877.90092
[30] Lo, K. C. 1996b, Nash Equilibrium without Mutual Knowledge of Rationality, mimeo, University of Alberta.
[31] Luce, R.D.; Raiffa, H., Games and decisions, (1957), Wiley New York · Zbl 0084.15704
[32] Marinacci, M., Decomposition and representation of coalitional games, Math. oper. res., 21, 1000-1015, (1996) · Zbl 0868.90152
[33] Marinacci, M., Finitely additive and epsilon Nash equilibria, Int. J. game theory, 26, 315-334, (1997) · Zbl 0879.90194
[34] Morris, S., Alternative definitions of knowledge, () · Zbl 0956.03018
[35] Mukerji, S. 1994, A Theory of Play for Games in Strategic Form when Rationality Is Not Common Knowledge, mimeo, Yale University.
[36] Mukerji, S, and, Shin, H. S. 1997, Equilibrium Departure from Common Knowledge in Games with Non-Additive Expected Utility, mimeo, University of Southampton.
[37] Myerson, R.B., Game theory, (1991) · Zbl 0729.90092
[38] Ryan, M. 1996, CEU Preferences and Game-Theoretic Equilibria, mimeo, Yale University.
[39] Sarin, R.; Wakker, P., A simple axiomatization of nonadditive expected utility, Econometrica, 60, 1255-1272, (1992) · Zbl 0772.90030
[40] Savage, L.J., The foundations of statistics, (1954), Wiley New York · Zbl 0121.13603
[41] Schmeidler, D. 1982, Subjective Probability without Additivity, mimeo, Tel Aviv University.
[42] Schmeidler, D., Subjective probability and expected utility without additivity, Econometrica, 57, 571-587, (1989) · Zbl 0672.90011
[43] Wakker, P., Characterizing optimism and pessimism directly through comonotonicity, J. econom. theory, 45, 453-463, (1990) · Zbl 0719.90010
[44] Walley, P., Statistical reasoning with imprecise probabilities, (1991), Chapman and Hall London · Zbl 0732.62004
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.