×

Local error estimators for finite element linear analysis. (English) Zbl 0967.74066

The authors propose a theory for estimating local errors either on stresses or on displacements which can be easily implemented. Two approaches can be distinguished depending on computational effort. The first one uses only a direct finite element analysis, whereas the second approach, following the initial finite element analysis, allows to conduct a reanalysis on \(\overline E\) and its surroundings for the \(\Sigma\) problem. A set of tools can be developed for automatically handling this latter stage; thus the second approach seems to be very attractive for stress estimation. The work is currently in progress for both two- and three-dimensional problems. Numerical examples are given for local error estimators for stresses.

MSC:

74S05 Finite element methods applied to problems in solid mechanics
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Ladevèze, P.; Oden, J.T., Advances in adaptive computational methods in mechanics, (1998), Elsevier Amsterdam · Zbl 0915.76001
[2] Babuška, I.; Strouboulis, T.; Upadhyay, C.S.; Gangaraj, S.K., A posteriori estimation and adaptive control of the pollution error in the h-version of the finite element method, Int. J. numer. methods engrg., 38, 4207-4235, (1995) · Zbl 0844.65078
[3] Babuška, I.; Strouboulis, T.; Gangaraj, S.K.; Copps, K.; Datta, D.K., A posteriori estimation of the error estimate, (), 155-197 · Zbl 0948.74068
[4] Peraire, J.; Patera, A., Bounds for linear-functional outputs of coercive partial differential equations: local indicators and adaptive refinement, (), 199-216
[5] Paraschivoiu, M.; Peraire, J.; Patera, A., A posteriori finite element bounds for linear-functional outputs of elliptic partial differential equation, Comput. methods appl. mech. engrg., 150, 289-312, (1997) · Zbl 0907.65102
[6] Beckers, R.; Rannacher, R., A feedback approach to error control in finite element methods: basic analysis and examples, East-west J. numer. math., 4, 237-264, (1996) · Zbl 0868.65076
[7] Rannacher, R.; Suttmeier, F.T., A feedback approach to error control in finite element methods: application to linear elasticity, Comput. mech., 19, 433-446, (1997) · Zbl 0894.73170
[8] Ladevèze, P., Une théorie pour l’estimation des erreurs locales dans LES calculs par éléments finis, ()
[9] Ladevèze, P., La méthode d’évaluation d’erreur en relation de comportement appliquée à la M.E.F.: qualité et amélioration, ()
[10] Ladevèze, P.; Rougeot, P., New advances in a posteriori error on constitutive relation in f.e. analysis, Comput. methods appl. mech. engrg., 150, 239-249, (1997) · Zbl 0906.73064
[11] Ladevèze, P., Nouvelles procédures d’estimations d’erreur relative à la méthode des éléments finis, ()
[12] Ladevèze, P.; Leguillon, D., Error estimate procedure in the finite element method and application, SIAM J. numer. anal., 20, 3, 485-509, (1983) · Zbl 0582.65078
[13] Ladevèze, P.; Coffignal, G.; Pelle, J.P., Accuracy of elastoplastic and dynamic analysis, (), 181-203
[14] Gallimard, L.; Ladevèze, P.; Pelle, J.P., Error estimation and adaptivity in elastoplasticity, Int. J. numer. methods engrg., 39, 189-217, (1996) · Zbl 0842.73065
[15] Ladevèze, P.; Moës, N., Adaptive control for time-dependent nonlinear finite element analysis, (), 79-92
[16] Ainsworth, M.; Oden, J.T., A posteriori error estimation in finite element analysis, () · Zbl 0789.65083
[17] Zienkiewicz, O.C.; Zhu, J.Z., The superconvergent patch recovery and a posteriori error estimates part 1: the recovery technique, Int. J. numer. methods engrg., 33, 1331-1364, (1992) · Zbl 0769.73084
[18] Zienkiewicz, O.C.; Zhu, J.Z., The superconvergent patch recovery and a posteriori error estimates part 2: error estimates and adaptivity, Int. J. numer. methods engrg., 33, 1365-1382, (1992) · Zbl 0769.73085
[19] Labbé, P.; Garon, A., A robust implementation of Zienkiewicz and Zhu’s local patch recovery method, Communications in num. methods engrg., 11, 427-434, (1995) · Zbl 0823.65105
[20] Paraschivoiu, M.; Patera, A., A hierarchical duality approach to bounds for the outputs of partial differential equations,, Comput. methods appl. mech. engrg., 158, 389-407, (1998) · Zbl 0953.76054
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.