×

zbMATH — the first resource for mathematics

Anticontrol of chaos in continuous-time systems via time-delay feedback. (English) Zbl 0967.93045
Summary: A systematic design approach based on time-delay feedback is developed for the anticontrol of chaos in a continuous-time system. This anticontrol method can drive a finite-dimensional, continuous-time, autonomous system from nonchaotic to chaotic, and can also enhance the existing chaos of an originally chaotic system. Asymptotic analysis is used to establish an approximate relationship between a time-delay differential equation and a discrete map. Anticontrol of chaos is then accomplished based on this relationship and the differential-geometric control theory. Several examples are given to verify the effectiveness of the methodology and to illustrate the systematic design procedure.

MSC:
93C10 Nonlinear systems in control theory
37D45 Strange attractors, chaotic dynamics of systems with hyperbolic behavior
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Controlling Chaos and Bifurcations in Engineering Systems, edited by G. Chen (CRC, Boca Raton, FL, 1999).
[2] G. Chen and X. Dong,From Chaos to Order: Perspectives, Methodologies, and Applications(World Scientific, Singapore, 1998). · Zbl 0908.93005
[3] A. L. Fradkov and A. Yu. Pogromsky,Introduction to Control of Oscillations and Chaos(World Scientific, Singapore, 1999).
[4] Control and Chaos: Mathematical Modelingedited by K. Judd, A. Mees, K. L. Teo, and T. Vincent (Birkhauser, Boston, 1997).
[5] T. Kapitaniak,Chaos for Engineers: Theory, Applications, and Control(Springer, New York, 1998). · Zbl 0904.58052
[6] M. Lakshmanan and K. Murali,Chaos in Nonlinear Oscillators: Controlling and Synchronization(World Scientific, Singapore, 1996). · Zbl 0868.58058
[7] Ottino, Science 257 pp 754– (1992)
[8] Schiff, Nature (London) 370 pp 615– (1994)
[9] Brandt, IEEE Trans. Circuits Syst., I: Fundam. Theory Appl. 44 pp 1031– (1997)
[10] Georgiou, SIAM (Soc. Ind. Appl. Math.) J. Appl. Math. 59 pp 1178– (1999)
[11] Kennedy, Int. J. Bifurcation Chaos Appl. Sci. Eng. 10 pp 695– (2000)
[12] Hasler, Int. J. Bifurcation Chaos Appl. Sci. Eng. 10 pp 719– (2000)
[13] Bollt, Int. J. Bifurcation Chaos Appl. Sci. Eng. 9 pp 2081– (1999)
[14] Chen, Int. J. Bifurcation Chaos Appl. Sci. Eng. 6 pp 1341– (1996)
[15] Chen, Int. J. Bifurcation Chaos Appl. Sci. Eng. 8 pp 1585– (1998)
[16] A. Vanecek and S. Celikovsky,Control Systems: From Linear Analysis to Synthesis of Chaos(Prentice-Hall, London, 1996).
[17] Wang, Int. J. Bifurcation Chaos Appl. Sci. Eng. 9 pp 1435– (1999)
[18] Wang, IEEE Trans. Circuits Syst., I: Fundam. Theory Appl. 47 pp 410– (2000)
[19] Wang, Int. J. Bifurcation Chaos Appl. Sci. Eng. 10 pp 549– (2000)
[20] Ott, Phys. Rev. Lett. 64 pp 1196– (1990)
[21] Mackey, Science 197 pp 287– (1977)
[22] Farmer, Physica D 4 pp 366– (1982)
[23] Ikeda, Physica D 29 pp 223– (1987)
[24] O. Diekmann, S. A. van Gils, S. M. verduyn Lunel, and H.-O. Walther,Delay Equations: Functional-, Complex-, and Nonlinear Analysis(Springer, Berlin, 1995). · Zbl 0826.34002
[25] Lu, IEEE Trans. Circuits Syst. Video Technol. 43 pp 700– (1996)
[26] Celka, Physica D 104 pp 127– (1997)
[27] Li, Am. Math. Monthly 82 pp 481– (1975)
[28] T. Kailath,Linear Systems(Prentice–Hall, Englewood Cliffs, NJ, 1980). · Zbl 0454.93001
[29] A. Isidori,Nonlinear Control Systems(Springer, Berlin, 1995). · Zbl 0878.93001
[30] Chua, IEEE Trans. Circuits Syst. Video Technol. 40 pp 732– (1993) · Zbl 0844.58052
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.