×

Rotating charged black hole solution in heterotic string theory. (English) Zbl 0968.83513

Summary: We construct a solution of the classical equations of motion arising in the low-energy effective field theory for heterotic string theory. This solution describes a black hole in four dimensions carrying mass \(M\), charge \(Q\), and angular momentum \(J\). The extremal limit of the solution is discussed.

MSC:

83C57 Black holes
81T30 String and superstring theories; other extended objects (e.g., branes) in quantum field theory
83E30 String and superstring theories in gravitational theory
PDF BibTeX XML Cite
Full Text: DOI arXiv

References:

[1] G. Gibbons, Nucl. Phys. B298 pp 741– (1988)
[2] D. Garfinkle, Phys. Rev. D 43 pp 3140– (1991)
[3] G. Horowitz, Nucl. Phys. B360 pp 197– (1991)
[4] A. Shapere, Mod. Phys. Lett. A 6 pp 2677– (1991) · Zbl 1020.83623
[5] S. Ferrara, Nucl. Phys. B121 pp 393– (1977)
[6] E. Cremmer, Phys. Lett. 68B pp 234– (1977)
[7] E. Cremmer, Phys. Lett. 74B pp 61– (1978)
[8] E. Cremmer, Nucl. Phys. B127 pp 259– (1977)
[9] E. Cremmer, Nucl. Phys. B159 pp 141– (1979)
[10] M. De Roo, Nucl. Phys. B255 pp 515– (1985)
[11] M. De Roo, Phys. Lett. 156B pp 331– (1985)
[12] E. Bergshoef, Phys. Lett. 155B pp 331– (1985)
[13] M. De Roo, Nucl. Phys. B262 pp 646– (1985)
[14] L. Castellani, Nucl. Phys. B268 pp 317– (1986)
[15] L. Castellani, Phys. Lett. 161B pp 91– (1985)
[16] S. Cecotti, Nucl. Phys. B308 pp 436– (1988)
[17] M. Duff, Nucl. Phys. B335 pp 610– (1990) · Zbl 0967.81519
[18] G. Veneziano, Phys. Lett. B 265 pp 287– (1991)
[19] K. Meissner, Phys. Lett. B 267 pp 33– (1991)
[20] K. Meissner, Mod. Phys. Lett. A 6 pp 3397– (1991) · Zbl 1020.81790
[21] M. Gasperini, Phys. Lett. B 272 pp 277– (1991)
[22] A. Sen, Phys. Lett. B 271 pp 295– (1991)
[23] A. Sen, Phys. Lett. B 274 pp 34– (1991)
[24] J. Horne, Phys. Rev. Lett. 68 pp 568– (1992) · Zbl 0969.81620
[25] V. Frolov, Ann. Phys. (Leipzig) 44 pp 371– (1987)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.