# zbMATH — the first resource for mathematics

On global stability of third-order nonlinear differential equations. (English) Zbl 0969.34048
It is considered the third-order nonlinear differential equation $x'''+ \psi(x,x')x''+ f(x,x')= 0, \tag{1}$ with $$\psi,f,\psi_{x}\in C(\mathbb{R}\times \mathbb{R},\mathbb{R}).$$ The main result is the following theorem: Assume that
(1) $$xf(x,0)>0$$ for $$x\neq 0,$$
(2) $$\int_{0}^{y}f(0,v) dv>0$$ for $$y\neq 0,$$
(3) $$\lim_{|x|\to\infty}\int_{0}^{x}f(u,0) du=\infty$$
and there is a positiv number $$B$$ such that
(4) $$\psi(x,y)\geq B,$$
(5) $$B[f(x,y)- f(x,0)-\int_{0}^{y}\psi_{x}(x,v)v dv]y\geq y\int_{0}^{y}f_{x}(x,v) dv,$$
(6) $$B[f(x,y)- f(x,0)-\int_{0}^{y}\psi_{x}(x,v)v dv]y +\psi(x,y)> \int_{0}^{y}f_{x}(x,v) dv + B$$ for $$y\neq 0,$$
(7) $$4B\int_{0}^{x}f(u,0) du \{\int_{0}^{y}[f(x,v)-f(x,0)] dv+ B\int_{0}^{y}[\psi(x,v)-B]v dv\}>y^{2}f^{2}(x,0)$$ for $$xy\neq 0.$$
Then the trivial solution to (1) is globally asymptotically stable.

##### MSC:
 34D23 Global stability of solutions to ordinary differential equations 34D20 Stability of solutions to ordinary differential equations
Full Text: