×

zbMATH — the first resource for mathematics

Analysis of functionally graded plates. (English) Zbl 0970.74041
Summary: Theoretical formulation, Navier’s solutions of rectangular plates, and finite element models based on the third-order shear deformation plate theory are presented for the analysis of through-thickness functionally graded plates. The plates are assumed to have isotropic, two-constituent material distribution through the thickness, and the modulus of elasticity of the plate is assumed to vary according to a power-law distribution in terms of volume fractions of constituents. The formulaton accounts for thermomechanical coupling, time dependence, and for von Kármán-type geometric nonlinearity. Numerical results obtained by using linear third-order theory and nonlinear first-order theory are presented to show the effect of material distribution on deflections and stresses.

MSC:
74K20 Plates
74S05 Finite element methods applied to problems in solid mechanics
74F05 Thermal effects in solid mechanics
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Hasselman, Journal of the American Ceramic Society 61 pp 49– (1978) · doi:10.1111/j.1151-2916.1978.tb09228.x
[2] (eds). Proceedings of the First International Symposium on Functionally Gradient Materials, Japan, 1990.
[3] Koizumi, Ceramic Transactions, Functionally Gradient Materials 34 pp 3– (1993)
[4] Sata, Ceramic Transactions, Functionally Gradient Materials 34 pp 109– (1993)
[5] Rabin, Ceramic Transactions, Functionally Gradient Materials 34 pp 173– (1993)
[6] Fukui, International Journal of Japan Society of Mechanical Engineers 34 pp 144– (1991)
[7] Noda, Applied Mechanical Review 44 pp 383– (1991) · doi:10.1115/1.3119511
[8] Tanigawa, Applied Mechanical Review 48 pp 377– (1995) · doi:10.1115/1.3005103
[9] Fukui, International Journal of Japan Society of Mechanical Engineers 35 pp 379– (1992)
[10] Fukui, International Journal of Japan Society of Mechanical Engineers 36 pp 156– (1993)
[11] Fuchiyama, Ceramic Transactions, Functionally Gradient Materials 34 pp 425– (1993)
[12] Tanigawa, Thermal Shock and Thermal Fatigue Behavior of Advanced Ceramics 241 pp 171– (1992)
[13] Tanaka, Computer Methods in Applied Mechanics and Engineering 106 pp 271– (1993) · Zbl 0783.73043 · doi:10.1016/0045-7825(93)90193-2
[14] Tanaka, Computer Methods in Applied Mechanics and Engineering 106 pp 377– (1993) · Zbl 0845.73006 · doi:10.1016/0045-7825(93)90088-F
[15] Jin, Ceramic Transactions, Functionally Gradient Materials 34 pp 47– (1993)
[16] Noda, International Journal of Solids Structures 30 pp 1039– (1993) · Zbl 0767.73055 · doi:10.1016/0020-7683(93)90002-O
[17] Jin, International Journal of Solids Structures 31 pp 203– (1994) · Zbl 0799.73055 · doi:10.1016/0020-7683(94)90050-7
[18] Obata, Transactions JSME 58 pp 1689– (1992) · doi:10.1299/kikaia.58.1689
[19] Obata, Journal of Thermal Stresses 17 pp 471– (1994) · doi:10.1080/01495739408946273
[20] Takeuti, Journal of Applied Mechanics 48 pp 113– (1981) · Zbl 0449.73008 · doi:10.1115/1.3157552
[21] Takeuti, Journal of Thermal Stresses 4 pp 461– (1981) · doi:10.1080/01495738108909980
[22] Reddy, Journal of Thermal Stresses 26 pp 593– (1998) · doi:10.1080/01495739808956165
[23] Praveen, Journal of Solids and Structures 35 pp 4457– (1998) · Zbl 0930.74037 · doi:10.1016/S0020-7683(97)00253-9
[24] Energy and Variational Methods in Applied Mechanics. John Wiley: New York, 1984.
[25] Mechanics of Laminated Composite Plates: Theory and Analysis. CRC Press: Boca Raton, FL, 1997. · Zbl 0899.73002
[26] Theory and Analysis of Elastic Plates. Taylor & Francis: Philadelphia, PA, 1999.
[27] Phan, International Journal for Numerical Methods in Engineering 21 pp 2201– (1985) · Zbl 0577.73063 · doi:10.1002/nme.1620211207
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.