Interaction between weak discontinuities and shocks in a dusty gas. (English) Zbl 0970.76101

Summary: We consider an axisymmetric dusty gas flow, and we study the interaction of a weak discontinuity with shock wave. If the shock curve is a similarity line, after the interaction it must lose this property in order the result of interaction could be uniquely determined.


76T15 Dusty-gas two-phase flows
76L05 Shock waves and blast waves in fluid mechanics
76N15 Gas dynamics (general theory)
Full Text: DOI Link


[1] Boillat, G.; Ruggeri, T., Reflection and transmission of discontinuity waves through a shock wave: general theory including also the case of characteristic shocks, Proc. roy. soc. Edinburgh sect. A, 83, 17-24, (1979) · Zbl 0416.76029
[2] Ruggeri, T., Interaction between a discontinuity wave and a shock wave: critical time for the fastest transmitted wave, example of the polytropic fluid, Appl. anal., 11, 103-112, (1980) · Zbl 0482.76062
[3] Strumia, A., Transmission and reflection of a discontinuity wave through a characteristic shock in non linear optics, Riv. mat. univ. parma (4), 4, 315-328, (1978) · Zbl 0417.73026
[4] Donato, A.; Oliveri, F., On non linear plane vibrations of a moving threadline, Z. angew. math. phys., 39, 367-374, (1988) · Zbl 0644.73055
[5] Conforto, F., Waves features and group analysis for an axi-symmetric model of a dusty gas, Internat. J. non-linear mech., 35, 925-930, (2000) · Zbl 1006.76097
[6] Roz̆destvenskiĭ, B.L.; Janenko, N.N., System of quasi-linear equations and their applications to gas dynamics, T.m.m., 55, (1983)
[7] Pai, S.I.; Menon, S.; Fan, Z.Q., Similarity solutions of a strong shock wave propagation in mixture of a gas and dusty particles, Internat. J. engrg. sci., 18, 1365-1373, (1980) · Zbl 0453.76091
[8] Ramu, A.; Rao, M.P.R., Converging spherical and cylindrical shock waves, J. engrg. math., 27, 411-417, (1993) · Zbl 0793.76051
[9] Whitham, G.B., Linear and non-linear waves, (1974), Wiley New York · Zbl 0373.76001
[10] Boillat, G., Sur une fonction croissante comme l’entropie génératrice des chocs dans le systémes hyperboliques, C. R. acad. sci. Paris Sèr. A, 283, 409-412, (1976) · Zbl 0336.35071
[11] Fusco, D., Alcune considerazioni sulle onde d’urto in fluidodinamica, Atti sem. mat. fis. univ. modena, 28, 223-233, (1979) · Zbl 0435.76042
[12] Jeffrey, A., Quasi-linear hyperbolic systems and waves, Research notes in math., 5, (1976), Pitman London
[13] Boillat, G., La propagation des ondes, (1965), Gauthier-Villars Paris · Zbl 0151.45104
[14] Boillat, G., Chocs caractéristiques, C. R. acad. sci. Paris Sèr. A, 274, 1018-1021, (1972) · Zbl 0234.35063
[15] Boillat, G., Discontinuités de contact, C. R. acad. sci. Paris Sér. A, 275, 1255-1258, (1972) · Zbl 0246.35063
[16] Lax, P.D., Hyperbolic systems of conservation laws, II, Comm. pure appl. math., 10, 537-566, (1957) · Zbl 0081.08803
[17] Ames, W.F.; Donato, A., On the evolution of weak discontinuities in a state characterized by invariant solutions, Internat. J. non-linear mech., 23, 167-174, (1998) · Zbl 0695.35122
[18] Donato, A., Non-linear waves, ()
[19] Jena, J.; Sharma, V.D., Self-similar shocks in a dusty gas, Internat. J. non-linear mech., 34, 313-327, (1999) · Zbl 1342.76070
[20] Brun, L., Ondes de choc finies dans LES solides élastiques, ()
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.