Spatial prediction and ordinary kriging. (English) Zbl 0970.86517

Summary: Suppose data \(\{Z(\mathbf s_i)\:i=1,\cdots,n\}\) are observed at spatial locations \(\{\mathbf s_i\:i=1,\cdots,n\}\). From these data, an unknown \(Z(\mathbf s_0)\) is to be predicted at a known location \(\mathbf s _0\), or, if \(Z(\mathbf s_0)\) has a component of measurement error, then a smooth version \(S(\mathbf s_0)\) should be predicted. This article considers the assumptions needed to carry out the spatial prediction using ordinary kriging, and looks at how nugget effect, range, and sill of the variogram affect the predictor. It is concluded that certain commonly held interpretations of these variogram parameters should be modified.


86A32 Geostatistics
86-08 Computational methods for problems pertaining to geophysics
86A20 Potentials, prospecting
Full Text: DOI


[1] Adler, R., 1981, The Geometry of Random Fields: New York, John Wiley & Sons, 280 p. · Zbl 0478.60059
[2] Besag, J., 1974, Spatial Interaction and the Statistical Analysis of Lattice Systems (with discussion), J. Roy. Stat. Soc., Series B, v. 36, p. 192-236. · Zbl 0327.60067
[3] Cressie, N., 1985, Fitting Variogram Models by Weighted Least Squares, Math. Geol., v. 17, p. 563-586.
[4] Cressie, N., 1986, Kriging Nonstationary Data, J. Amer. Stat. Assoc., v. 81, p. 625-634. · Zbl 0625.62086
[5] Cressie, N. and Chan, N., 1986, Spatial Modeling of Regional Variables, Preprint 86-54, Statistical Laboratory, Iowa State University, Ames, Iowa, 34 p. · Zbl 1248.62211
[6] Cressie, N. and Glonek, G. F., 1984, Median Based Covariogram Estimators Reduce Bias, Stat. Prob. Lett., v. 2, p. 299-304. · Zbl 0572.62070
[7] Gandin, L. S., 1963, Objective Analysis of Meteorological Fields: GIMIZ, Leningrad (reprinted in 1965 by the Israel Program for Scientific Translations, Jerusalem), 238 p.
[8] Journel, A. G., 1983, Nonparametric Estimation of Spatial Distributions, Math. Geol., v. 15, p. 445-468.
[9] Journel, A. G. and Huijbregts, C. J., 1978, Mining Geostatistics: Academic Press, London, 600 p.
[10] Jowett, G. H., 1952, The Accuracy of Systematic Sampling from Conveyor Belts, Appl. Stat., v. 1, p. 50-59.
[11] Karlin, S., 1969, A First Course in Stochastic Processes: New York, Academic Press, 502 p.
[12] Kolmogorov, A. N., 1941a, The Local Structure of Turbulence in an Incompressible Fluid at Very Large Reynolds Numbers: Dokl. Akad. Nauk SSR, v. 30, p. 229-303. (Reprinted in Turbulence: Classic Papers on Statistical Theory, eds. S. K. Friedlander and L. Topping, Interscience Publishers, New York 1961).
[13] Kolmogorov, A. N., 1941b, Interpolation and Extrapolation of Stationary Random Sequences: Izv. Akad. Nauk SSR, Ser. Math., v. 5, no. 3.
[14] Lindgren, B. W., 1976, Statistical Theory: New York, MacMillan, 614 p.
[15] Matern, B., 1960, Spatial Variation: Medd. Statens Skogsforskningsinst., v. 49, no. 5, 144 p.
[16] Matheron, G., 1963, Principles of Geostatistics, Econ. Geol., v. 58, p. 1246-1266.
[17] Matheron, G., 1971, The Theory of Regionalized Variables and its Applications: Cahiers du Centre de Morphologie Mathématique no. 5, Fontainebleau, France, 211 p.
[18] Matheron, G., 1976, A Simple Substitute for Conditional Expectation: The Disjunctive Kriging, in M. Guarascio, M. David, and C. Huijbregts, eds, Advanced Geostatistics in the Mining Industry: D. Reidel, Holland, p. 221-236.
[19] Morrison, D. F., 1978, Multivariate Statistical Methods, 2nd ed: McGraw-Hill, Tokyo, 415 p. · Zbl 0183.20605
[20] Stein, M. L., 1987, Minimum Norm Quadratic Estimation of Spatial Variograms, Jour. Amer. Stat. Assoc., v. 82, p. 765-772.
[21] Wiener, N., 1949, Extrapolation, Interpolation and Smoothing of Stationary Time Series: MIT Press, Cambridge, 312 p. · Zbl 0036.09705
[22] Yaglom, A. M., 1962, An Introduction to the Theory of Stationary Random Functions, reprint: Dover Publications, New York, 235 p. · Zbl 0121.12601
[23] Yakowitz, S. J. and Szidarovsky, F., 1985, A Comparison of Kriging with Nonparametric Regression Methods: Jour. Multivar. Anal., v. 16, p. 21-53. · Zbl 0591.62060
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.