×

A PT-symmetric QES partner to the Khare-Mandal potential with real eigenvalues. (English) Zbl 0972.81026

Summary: We consider a PT-symmetric partner to Khare-Mandal’s recently proposed non-Hermitian potential with complex eigenvalues. Our potential, which is quasi-exactly solvable, is shown to possess only real eigenvalues.

MSC:

81Q05 Closed and approximate solutions to the Schrödinger, Dirac, Klein-Gordon and other equations of quantum mechanics
PDF BibTeX XML Cite
Full Text: DOI arXiv

References:

[1] Bender, C.M.; Boettcher, S., Phys. rev. lett., 80, 5243, (1998)
[2] Bender, C.M.; Boettcher, S., J. phys. A, 31, L273, (1998)
[3] Delabaere, E.; Pham, F., Phys. lett. A, 250, 25, (1998), 29
[4] Znojil, M., Phys. lett. A, 259, 220, (1999)
[5] Bagchi, B.; Roychoudhury, R., J. phys. A, 33, L1, (2000) · Zbl 0967.81016
[6] Znojil, M., J. phys. A, 33, L61, (2000)
[7] Znojil, M., J. phys. A, 33, 4561, (2000)
[8] Bagchi, B.; Cannata, F.; Quesne, C., Phys. lett. A, 269, 79, (2000)
[9] Khare, A.; Mandal, B.P., Phys. lett. A, 272, 53, (2000)
[10] Bagchi, B.; Quesne, C., Phys. lett. A, 273, 285, (2000) · Zbl 1050.81546
[11] Cannata, F.; Ioffe, M.; Roychoudhury, R.; Roy, P., Phys. lett. A, 281, 305, (2001) · Zbl 0984.81041
[12] Lévai, G.; Cannata, F.; Ventura, A., J. phys. A, 34, 839, (2001) · Zbl 1034.81052
[13] Ahmed, Z., Phys. lett. A, 282, 343, (2001)
[14] Dorey, P.; Dunning, C.; Tateo, R., J. phys. A, 34, L391, (2001)
[15] D. Bessis, unpublished (1992)
[16] Ushveridze, A., Quasi-exactly solvable models in quantum mechanics, (1994), Institute of Physics Publishing Bristol · Zbl 0834.58042
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.