×

Noncommutative scalar solitons: existence and nonexistence. (English) Zbl 0972.81192

Summary: We study the variational equations for solitons in noncommutative scalar field theories in an even number of spatial dimensions. We prove the existence of spherically symmetric solutions for a sufficiently large noncommutativity parameter \(\theta\) and we prove the absence of spherically symmetric solutions for small \(\theta\).

MSC:

81T75 Noncommutative geometry methods in quantum field theory
35Q51 Soliton equations
PDF BibTeX XML Cite
Full Text: DOI arXiv

References:

[1] Connes, A.; Douglas, M.; Schwarz, A., Noncommutative geometry and matrix theory: compactification on tori, Jhep, 02, 003, (1998)
[2] Seiberg, N.; Witten, E., String theory and noncommutative geometry, Jhep, 06, 032, (1999)
[3] Polychronakos, A.P., Flux tube solutions in noncommutative gauge theories · Zbl 0976.81125
[4] Aganagic, M.; Gopakumar, R.; Minwalla, S.; Strominger, A., Unstable solitons in noncommutative gauge theory
[5] Bak, D., Exact solutions of multi-vortices and false vacuum bubbles in noncommutative abelian – higgs theories · Zbl 0976.81124
[6] Gross, D.J.; Nekrasov, N.A., Solitons in noncommutative gauge theory
[7] Harvey, J.A.; Kraus, P.; Larsen, F., Exact noncommutative solitons · Zbl 0990.81547
[8] Gopakumar, R.; Minwalla, S.; Strominger, A., Noncommutative solitons, Jhep, 0005, 020, (2000) · Zbl 0989.81612
[9] Derrick, G., Comments on nonlinear wave equations as models for elementary particles, J. math. phys., 5, 1252, (1964)
[10] Zhou, C.-G., Noncommutative scalar solitons at finite θ
[11] Gorsky, A.S.; Makeenko, Y.M.; Selivanov, K.G., On noncommutative vacua and noncommutative solitons · Zbl 0976.81122
[12] Lindstrøm, U.; Rocek, M.; von Unge, R., Non-commutative soliton scattering · Zbl 0990.81753
[13] Solovyov, A., On noncommutative solitons · Zbl 0973.81123
[14] Bak, D.; Lee, K., Elongation of moving noncommutative solitons
[15] Matsuo, Y., Topological charges of noncommutative soliton · Zbl 0972.81190
[16] Taylor, M., Pseudodifferential operators, (1981), Princeton University Press Princeton · Zbl 0453.47026
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.