×

zbMATH — the first resource for mathematics

Nonlinear interaction of traveling waves of nonintegrable equations. (English) Zbl 0973.35502
Summary: We present a new methodology for deriving physically important exact solutions of certain nonintegrable equations. These solutions describe the nonlinear interaction of traveling waves. Examples include multishock and multisoliton solutions.

MSC:
35Q53 KdV equations (Korteweg-de Vries equations)
35C05 Solutions to PDEs in closed form
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] R. Fitzhugh, Biophys. J. 1 pp 445– (1961) · doi:10.1016/S0006-3495(61)86902-6
[2] J. S. Nagumo, Proc. IRE 50 pp 2061– (1962) · doi:10.1109/JRPROC.1962.288235
[3] A. C. Newell, J. Fluid Mech. 38 pp 239– (1969) · Zbl 0187.25102 · doi:10.1017/S0022112069000176
[4] A. Kolmogorov, Bull. Univ. Etat. Moscou (Ser. Int.) A1 pp 1– (1937)
[5] I. M. Gel’fand, Uspeki Matem Nauk 30 pp 67– (1975)
[6] G. W. Bluman, J. Math. Mech. 18 pp 1025– (1969)
[7] L. V. Ovsiannikov, in: Group Analysis of Differential Equations (1982) · Zbl 0485.58002
[8] H. D. Wahlquist, Phys. Rev. Lett. 31 pp 1386– (1973) · doi:10.1103/PhysRevLett.31.1386
[9] E. L. Ince, in: Ordinary Differential Equations (1926) · Zbl 0063.02971
[10] F. Cariello, Physica (Amsterdam) 53D pp 59– (1991)
[11] R. N. Aiyer, J. Phys. A 19 pp 3755– (1986) · Zbl 0622.35067 · doi:10.1088/0305-4470/19/18/022
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.