Some remarks on polynomial structures. (English) Zbl 0974.53021

Author’s abstract: A polynomial structure \((M,f)\) of degree \(n\) on a connected \(C^\infty\)-manifold \(M\) is a (1,1)-tensor field \(F\) satisfying on \(M\) an equation \[ p(F)=F^n+ a_1F^{n-1}+ \cdots+a_{n-1} F+a_nI=0 \] where the coefficients of the structural polynomial \(p\) are either constants or functions. The integrability of polynomial structures (with constant coefficients) the structure polynomial of which has only simple roots were investigated in [J. Vanzura, Kodai Math. Sem. Rep. 27, 42-50 (1976; Zbl 0326.53050)]. We will analyze here integrability conditions found there in more details, using a complexification of the tangent bundle of the base manifold. We will associate with \((M,F)\) a complex almost product structure on the complexification of the tangent bundle, and will prove that \((M,F)\) is integrable if and only if its associated complex almost product structure is integrable.


53C15 General geometric structures on manifolds (almost complex, almost product structures, etc.)


Zbl 0326.53050
Full Text: EuDML


[1] Bejancu A.: Geometry of CR-submanifolds. D. Reidel, Dordrecht, 1986. · Zbl 0605.53001
[2] Bureš J.: Some algebraically related almost complex and almost tangent structures on differentiable manifolds. Coll. Math. Soc. J. Bolyai, 31 Diff. Geom. (Budapest) 1979, 119-124.
[3] Goldberg S. I., Petridis N. C.: Differentiable solutions of algebraic equations on manifolds. Ködai Math. Sem. Rep. 25 (1973), 111-128. · Zbl 0253.53034
[4] Goldberg S. I., Yano K.: Polynomial structures on manifolds. Ködai Math. Sem. Rep. 22 (1970), 199-218. · Zbl 0194.52702
[5] Ishihara S.: Normal structure f satisfying f3 + f = 0. Ködai Math. Sem. Rep. 18 1966, 36-47. · Zbl 0136.18302
[6] Lehmann-Lejeune J.: Integrabilité des G-structures definies par une 1-forme 0-deformable a valeurs dans le fibre tangent. Ann. Inst. Fourier 16 (Grenoble), 2 1966, 329-387. · Zbl 0145.42103
[7] Lehmann-Lejeune J.: Sur l’intégrabilité de certaines G-structures. C. R. Acad. Sci Paris 258 1984, 32-35.
[8] Mizner R. I.: CR structures of codimension 2. J. Differ. Geom. 30 (1989), 167-190. · Zbl 0675.32017
[9] Mizner R. I.: Almost CR structures, f-structures, almost product structures and associated connections. Rocky Mountain J. of Math. 23 (1993), 1337-1359. · Zbl 0806.53030
[10] Newlander A., Nierenberg L.: Complex analytic coordinates in almost complex manifolds. Ann. Math. 65 (1957), 391-404. · Zbl 0079.16102
[11] Opozda B.: Almost product and almost complex structures generated by polynomial structures. Acta Math. Jagellon. Univ. 24 (1984), 27-31. · Zbl 0582.53032
[12] Shandra I. V.: On an isotranslated \(n\pi\)- structure and connections preserving a nonholonomic \((n+1)\)-coweb. Webs and Quasigroups, 1994, Tver (Russia), 60-66. · Zbl 0896.53021
[13] Vanžura J.: Integrability conditions for polynomial structures. Ködai Math. Sem. Rep. 27 1976, 42-60.
[14] Vanžura J., Vanžurová A.: Polynomial mappings of polynomial structures. Acta Univ. Palacki. Olomuc., Fac. rer. nat. 114 (1994), 157-164. · Zbl 0854.53024
[15] Vanžurová A.: Parallelisability conditions for differentiable three-webs. Arch. Math. (Brno) 32, 1 (1995), 74-84. · Zbl 0835.53019
[16] Walczak P. G.: Polynomial structures on principal fibre bundles. Coll. Math. 35 (1976), 73-81. · Zbl 0324.53030
[17] Walker A. G.: Almost-product structures. Differential geometry, Proc. of Symp. in Pure Math. 3 (1961), 94-100. · Zbl 0103.38801
[18] Yano K.: On a structure defined by a tensor field f of type (1,1) satisfying f3 -f = 0. Tensor, 1963, 99-109. · Zbl 0122.40705
[19] Yano K., Kon M.: CR submanifolds of Kaehlerian and Sasakian manifolds. Birkhäuser, Boston, 1983. · Zbl 0496.53037
[20] Yano K., Kon M.: Structures on manifolds. World Scientific, Singapore, 1984. · Zbl 0557.53001
[21] Lang S.: Algebra. New York, 1965. · Zbl 0193.34701
[22] Gantmacher F. R.: Teorija matric. Moskva, 1966.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.