zbMATH — the first resource for mathematics

Feasibility conditions for circle criterion designs. (English) Zbl 0974.93049
Summary: We derive necessary and sufficient conditions for the existence of a control law that renders the closed-loop system strictly positive real with respect to a disturbance input. The result is used to establish feasibility of recent nonlinear controller and observer designs based on the circle criterion.

93D10 Popov-type stability of feedback systems
93C73 Perturbations in control/observation systems
Full Text: DOI
[1] M. Arcak, P.V. Kokotović, Nonlinear observers: a circle criterion design. in: Proceedings of the 38th IEEE Conference on Decision and Control, Phoenix, AZ, 1999, pp. 4872-4876.
[2] S. Boyd, L. El Ghaoui, E. Feron, V. Balakrishnan, Linear Matrix Inequalities in System and Control Theory, SIAM Studies Appl. Math., Vol. 15, SIAM, Philadelphia, 1994. · Zbl 0816.93004
[3] Chen, B.M., H∞ control and its applications, (1998), Springer London
[4] Fradkov, A.L., Quadratic Lyapunov functions in the adaptive stability problem of a linear dynamic target, Siberian math. J., 341-348, (1976) · Zbl 0357.93024
[5] Haddad, W.; Bernstein, D., Robust stabilization with positive real uncertainty: beyond the small gain theorem, Systems control lett., 17, 191-208, (1991) · Zbl 0759.93062
[6] Isidori, A., Nonlinear control systems II, (1999), Springer London · Zbl 0924.93038
[7] M. Janković, M. Larsen, P.V. Kokotović, Master-slave passivity design for stabilization of nonlinear systems, in: Proceedings of the 18th American Control Conference, San Diego, CA, 1999, pp. 769-773.
[8] Kokotović, P.V.; Sussmann, H.J., A positive real condition for global stabilization of nonlinear systems, Systems control lett., 19, 177-185, (1989) · Zbl 0684.93066
[9] Safonov, M.G.; Jonckheere, E.A.; Verma, M.; Limebeer, D.J.N., Synthesis of positive real multivariable feedback systems, Internat. J. control, 45, 817-842, (1987) · Zbl 0621.93019
[10] Scherer, C., H∞-control by state-feedback for plants with zeros on the imaginary axis, SIAM J. control optim., 30, 123-142, (1992) · Zbl 0748.93041
[11] Sun, W.; Khargonekar, P.P.; Shim, D., Solution to the positive real control problem for linear time-invariant systems, IEEE trans. automat. control, 39, 2034-2046, (1994) · Zbl 0815.93032
[12] Turan, L.; Safonov, M.G.; Huang, C.-H., Synthesis of positive real feedback systems: a simple derivation via Parrott’s theorem, IEEE trans. automat. control, 42, 1154-1157, (1997) · Zbl 0887.93053
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.