zbMATH — the first resource for mathematics

Magneto-micropolar fluid motion: Global existence of strong solutions. (English) Zbl 0976.35055
Summary: By using the spectral Galerkin method, we prove a result on global existence in time of strong solutions for the motion of a magneto-micropolar fluid \[ {\partial u\over\partial t}+u\cdot\nabla u- (\mu+\chi)\Delta u+ \nabla\Biggl(p+{1\over 2} rb\cdot b\Biggr)= \chi\text{ rot }w+ rb\cdot\nabla b+ f, \] \[ j{\partial w\over\partial t}+ ju\cdot\nabla w- \gamma\Delta w+ 2\chi w-(\alpha+ \beta)\nabla\text{ div } w= \chi\text{ rot }u+ g, \] \[ {\partial b\over\partial t}- \nu\Delta b+ u\cdot\nabla b- b\cdot\nabla u= 0, \] \[ \text{div }u= \text{div }b= 0\quad\text{in }(0,T)\times \Omega \] without assuming the external forces decay with time. We also derive uniform in time estimates of the solution that are usual for obtaining error bounds for the approximate solutions.

35Q35 PDEs in connection with fluid mechanics
76W05 Magnetohydrodynamics and electrohydrodynamics
76M30 Variational methods applied to problems in fluid mechanics
Full Text: DOI Link EuDML