×

zbMATH — the first resource for mathematics

Magneto-micropolar fluid motion: Global existence of strong solutions. (English) Zbl 0976.35055
Summary: By using the spectral Galerkin method, we prove a result on global existence in time of strong solutions for the motion of a magneto-micropolar fluid \[ {\partial u\over\partial t}+u\cdot\nabla u- (\mu+\chi)\Delta u+ \nabla\Biggl(p+{1\over 2} rb\cdot b\Biggr)= \chi\text{ rot }w+ rb\cdot\nabla b+ f, \] \[ j{\partial w\over\partial t}+ ju\cdot\nabla w- \gamma\Delta w+ 2\chi w-(\alpha+ \beta)\nabla\text{ div } w= \chi\text{ rot }u+ g, \] \[ {\partial b\over\partial t}- \nu\Delta b+ u\cdot\nabla b- b\cdot\nabla u= 0, \] \[ \text{div }u= \text{div }b= 0\quad\text{in }(0,T)\times \Omega \] without assuming the external forces decay with time. We also derive uniform in time estimates of the solution that are usual for obtaining error bounds for the approximate solutions.

MSC:
35Q35 PDEs in connection with fluid mechanics
76W05 Magnetohydrodynamics and electrohydrodynamics
76M30 Variational methods applied to problems in fluid mechanics
PDF BibTeX XML Cite
Full Text: DOI Link EuDML