×

zbMATH — the first resource for mathematics

On identifying global nonlinear discrete models from chaotic data. (English) Zbl 0976.93501

MSC:
93B30 System identification
37D45 Strange attractors, chaotic dynamics of systems with hyperbolic behavior
93C10 Nonlinear systems in control theory
93C55 Discrete-time control/observation systems
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] DOI: 10.1142/S0218127494000617 · Zbl 0900.70335
[2] DOI: 10.1080/00207179508921557 · Zbl 0837.93009
[3] DOI: 10.1142/S0218127496000059 · Zbl 0870.58091
[4] Billings S. A., Int. J. Syst. Sci. 23 (7) pp 123– (1988)
[5] Billings S. A., Int. J. Control 50 (5) pp 1873– (1992)
[6] DOI: 10.1080/00207728808964057 · Zbl 0669.93015
[7] DOI: 10.1080/00207178908559767
[8] DOI: 10.1080/00207178908559683 · Zbl 0674.93009
[9] DOI: 10.1080/00207178908953472 · Zbl 0686.93093
[10] DOI: 10.1103/PhysRevA.34.4971
[11] DOI: 10.1142/S0218127493000039 · Zbl 0875.62429
[12] DOI: 10.1142/S0218126693000046
[13] DOI: 10.1142/S0218126693000150
[14] DOI: 10.1016/0005-1098(90)90044-I · Zbl 0721.93023
[15] DOI: 10.1142/S021812749300026X · Zbl 0870.58078
[16] DOI: 10.1080/00207178808906169 · Zbl 0647.93062
[17] DOI: 10.1080/0020718508961129 · Zbl 0569.93011
[18] DOI: 10.1080/0020718508961130 · Zbl 0569.93012
[19] Mendes E. M. A. M., Int. J Bifurcation and Chaos, (accepted). (1996)
[20] DOI: 10.1142/S0218126693000319
[21] DOI: 10.1080/00207179308934380 · Zbl 0825.93131
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.