## The functional equations of Frank and Alsina for uninorms and nullnorms.(English)Zbl 0977.03026

Motivated by some questions arising in fuzzy preference modelling, the authors consider some generalizations of Frank’s functional equation: $T(x,y) + S(x,y) = x+ y \tag{1}$ and Alsina’s functional equation $S(T(x,y), T(x,N(y)) = x . \tag{2}$ Equations (1) and (2) were solved initially in the case that $$T$$ is a continuous t-norm, $$S$$ is a continuous t-conorm, $$N$$ is a strong negation and $$x,y$$ run in [0,1]. The chief concern in this paper is to study (1) and (2) for more general classes of binary operations, the so-called uninorms and nullnorms. It is interesting that the solution found led back to the already known solutions for the case of t-norms and t-conorms.

### MSC:

 03E72 Theory of fuzzy sets, etc. 39B22 Functional equations for real functions 03B52 Fuzzy logic; logic of vagueness
Full Text:

### References:

 [1] Aczél, J., Lectures on functional equations and applications, (1966), Academic Press New York · Zbl 0139.09301 [2] Alsina, C., On a family of connectives for fuzzy sets, Fuzzy sets and systems, 16, 231-235, (1985) · Zbl 0603.39005 [3] C. Alsina, On connectives in fuzzy logic satisfying the condition $$S(T1(x,y),T2(x,N(y)))=x$$, Proc. 6th IEEE Internat. Conf. on Fuzzy Systems, Barcelona, Spain, Vol. I, 1997, pp. 149-152. [4] T. Calvo, Contribución al estudio de las ternas de De Morgan generalizadas, Ph.D. Thesis, Universidad Politécnica de Madrid, 1989. [5] Calvo, T., On mixed De Morgan triplets, Fuzzy sets and systems, 50, 47-50, (1992) · Zbl 0786.39003 [6] T. Calvo, G. Mayor, Algunas generalizaciones de la relación $$(A∩B)∪(A∩B\^{}\{ c\})=A$$ en la teoria de conjuntos difusos, Proc. Congrés Català de Lògica VI, Barcelona, Spain, 1987, pp. 59- 61. [7] Czogała, E.; Drewniak, J., Associative monotonic operations in fuzzy set theory, Fuzzy sets and systems, 12, 249-269, (1984) · Zbl 0555.94027 [8] De Baets, B., Uninormsthe known classes, (), 21-28 [9] B. De Baets, B. Van de Walle, E. Kerre, The Frank t-norm family in fuzzy preference modelling, in: H.-J. Zimmermann (Ed.), Proc. 4th European Congress on Intelligent Techniques and Soft Computing, Aachen, Germany, Vol. 1, ELITE, 1996, pp. 78-82. [10] Frank, M., On the simultaneous associativity of $$F(x,y)$$ and $$x+y−F(x,y)$$, Aeq. math., 19, 194-226, (1979) · Zbl 0444.39003 [11] Fodor, J., An extension of Fung-Fu’s theorem, Internat. J. uncertain. fuzziness knowledge-based systems, 4, 235-243, (1996) · Zbl 1232.91130 [12] Fodor, J.; Calvo, T., Aggregation functions defined by t-norms and t-conorms, (), 36-48 · Zbl 0904.39016 [13] Fodor, J.; Roubens, M., Valued preference structures, European J. oper. res., 79, 277-286, (1994) · Zbl 0812.90005 [14] Fodor, J.; Roubens, M., Fuzzy preference modelling and multicriteria decision support, (1994), Kluwer Academic Publishers Dordrecht · Zbl 0827.90002 [15] Fodor, J.; Yager, R.; Rybalov, A., Structure of uninorms, Internat. J. uncertain. fuzziness knowledge-based systems, 5, 411-427, (1997) · Zbl 1232.03015 [16] Fung, L.; Fu, K., An axiomatic approach to rational decision-making in a fuzzy environment, (), 227-256 [17] G. Mayor, E. Trillas, On the representation of some aggregation functions, Proc. Internat. Symp. on Multiple-Valued Logic, 1986, pp. 110-114. [18] Schweizer, B.; Sklar, A., Probabilistic metric spaces, (1983), Elsevier New York · Zbl 0546.60010 [19] B. Van de Walle, B. De Baets, E. Kerre, Characterizable fuzzy preference structures, in: D. Bouyssou, Ph. Vincke (Eds.), Ann. Oper. Res., Special Issue “Preference modelling” 80 (1998) 105-136. · Zbl 0907.90012 [20] Yager, R.; Rybalov, A., Uninorm aggregation operators, Fuzzy sets and systems, 80, 111-120, (1996) · Zbl 0871.04007
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.