×

Unfolding the quartic oscillator. (English) Zbl 0977.34052

The paper is concerned with geometry of energy levels of the quartic oscillator \(-h^2\Psi''+V(q) \Psi=E\Psi\), where \(V\) is the polynomial \(V(q)=q^4+\alpha q^2+\beta q\). The authors introduce the “swallowtail surface” \((V'(q)=V(q)-E=0)\) in the parameter space \((\alpha, \beta,E)\) and discuss various regions (simple oscillator, double oscillator, etc.) in this space. The basic point of the paper is that the parameter space “can be covered by various analytic charts, in each of which the quantization condition is given exactly by an explicit analytic relation between the coordinates of the chart”. These relations, called model quantization conditions, look very similar to “what one would get by a lowest-order semiclassical approximation (for instance then ‘model equation’ in section 3.1 has exactly the same form as C. M. Bender and T. T. Wu’s ‘secular equation’ in [C. M. Bender and T. T. Wu, Phys. Rev., II. Ser. 184, 1231-1260 (1969) (section 4)])”. The coordinates of local charts are obtained by resumming WKB-type expansions in powers of \(h\), using resurgence theory. The paper is written on the “physical level” of rigor, but, according to the authors, most of the details can be found in [E. Delabaere, H. Dillinger and F. Pham, J. Math. Phys. 38, No. 12, 6126-6184 (1997; Zbl 0896.34051)].

MSC:

34E20 Singular perturbations, turning point theory, WKB methods for ordinary differential equations
81Q20 Semiclassical techniques, including WKB and Maslov methods applied to problems in quantum theory
34C15 Nonlinear oscillations and coupled oscillators for ordinary differential equations
34M37 Resurgence phenomena (MSC2000)

Citations:

Zbl 0896.34051
PDF BibTeX XML Cite
Full Text: DOI Link

References:

[1] Alvarez, G.; Silverstone, H.J., Large-field of the losurdo-Stark resonances in atomic hydrogen, Phys. rev. A, 50, 4679-4699, (1994)
[2] Bender, C.M.; Wu, T.T., Anharmonic oscillator, Phys. rev., 184, 1231-1260, (1969)
[3] Bender, C.M.; Wu, T.T., Anharmonic oscillator. II. A study of perturbation theory in large order, Phys. rev. D, 7, 1620-1636, (1973)
[4] Bender, C.M.; Happ, H.J.; Svetitsky, B., Phys. rev. D, 9, 2324-2362, (1974)
[5] Berry, M.V.; Howls, C.J., Hyperasymptotics for integral with saddles, Proc. roy. soc. lond. A, 434, 657-675, (1991) · Zbl 0764.30031
[6] Candelpergher, B.; Nosmas, C.; Pham, F., Premiers pas en calcul étranger, Ann. inst. Fourier, 43, 201-224, (1993) · Zbl 0785.30017
[7] Colin de Verdière, Y.; Parisse, B., Equilibre instable en régime semi-classique. II. conditions de Bohr-Sommerfeld, Ann. inst. H. Poincaré phys. théor., 61, 347-367, (1994) · Zbl 0845.35076
[8] Delabaere, E.; Dillinger, H.; Pham, F., Développements semi-classiques exacts des niveaux d’énergie d’un oscillateur à une dimension, C. R. acad. sci. Paris Sér. I, 310, 141-146, (1990) · Zbl 0712.35071
[9] Delabaere, E.; Dillinger, H.; Pham, F., Résurgence de voros et périodes des courbes hyperelliptiques, Ann. inst. Fourier, 43, 163-199, (1993) · Zbl 0766.34032
[10] Delabaere, E.; Dillinger, H.; Pham, F., Exact semi-classical expansions for one dimensional quantum oscillators, J. math. phys., (1997) · Zbl 0896.34051
[11] E. Delabaere, F. Pham, Resurgent methods in semi-classical asymptotics, Ann. Inst. H. Poincaré Phys. Théor. · Zbl 0977.34053
[12] Ecalle, J., Publ. math. D’orsay, (1981.05, 1981.06, and 1985.05)
[13] J. Ecalle, Cinq applications des fonctions résurgentes, Publ. Math. D’Orsay, Université Paris-Sud, Orsay, 84T 62
[14] Ecalle, J., Weighted products and parametric resurgence, Analyse algébrique des perturbations singulières I: Méthodes résurgentes, (1994), Hermann Paris, p. 7-49 · Zbl 0834.34067
[15] Fröman, N., The energy levels of double-well potentials, Ark. fys., 32, 79-97, (1966)
[16] Ford, K.W.; Hill, D.L.; Wakano, M.; Wheeler, J.A., Quantum effects near a barrier maximum, Ann. phys., 7, 239-258, (1959) · Zbl 0086.22406
[17] Harrel, E.; Simon, B., The mathematical theory of resonances whose widths are exponentially small, Duke math. J., 47, 845-883, (1980) · Zbl 0455.35091
[18] Khuat-duy, D.; Leboeuf, P., Multiresonance tunneling effect in double-well potentials, Appl. phys. lett., 63, 1903-1905, (1993)
[19] J. J. Loeffel, A. Martin, 1970, Proceedings of the R.C.P. 25, Math. Department, Strasbourg
[20] Pham, F., Confluence of turning points in exact WKB analysis, The Stokes phenomenon and Hilbert’s 16th problem, (1996), World Scientific Singapore, p. 215-235 · Zbl 0857.34057
[21] Poston, J.; Stewart, I., Catastrophe theory and its applications, (1978), Pitnam London · Zbl 0382.58006
[22] Simon, B., Coupling constant analyticity for the anharmonic oscillator, Ann. of phys., 58, 76-136, (1970)
[23] Simon, B., Large orders and summability of eigenvalue perturbation theory: A mathematical overview, Int. J. quant. chem., 21, 3-25, (1982)
[24] Shanley, P.E., Spectral properties of the scaled quartic anharmonic oscillator, Ann. of phys., 186, 292-324, (1988) · Zbl 0646.58038
[25] Shanley, P.E., Nodal properties of the scaled quartic anharmonic oscillator, Ann. of phys., 186, 325-354, (1988) · Zbl 0646.58039
[26] Sternin, B.; Shatalov, V., Borel-Laplace transform and asymptotic theory (introduction to resurgent analysis), (1995), CRC Press Boca Raton
[27] Voros, A., The return of the quartic oscillator. the complex WKB method, Ann. inst. H. Poincaré phys. théor., 39, 211-338, (1983) · Zbl 0526.34046
[28] Voros, A., Résurgence quantique, Ann. inst. Fourier, 43, 1509-1543, (1993) · Zbl 0807.35105
[29] Voros, A., Exact quantization condition for anharmonic oscillator (in one dimension), J. phys. A: math. gen., 27, 4653-4661, (1994) · Zbl 0842.34090
[30] A. S. Wightman, φ4ν, Mathematical Quantum Field Theory and Related Topics, Canadian Math. Soc. Conference Proceedings, 1988, 9, 1, 13
[31] Zinn-Justin, J., The principles of instanton calculus: A few applications, Recent advances in field theory and statistical mechanics, LES houches, session 39, 1982, (1984), North-Holland Amsterdam
[32] Zinn-Justin, J., Multi-instanton contributions in quantum mechanics (II), Nucl. phys. B, 218, 333-348, (1983)
[33] Zinn-Justin, J., Instantons in quantum mechanics: numerical evidence for a conjecture, J. math. phys., 25, 549-555, (1984)
[34] Zinn-Justin, J., Quantum field theory and critical phenomena, (1989), Oxford Sci Oxford
[35] Zinn-Justin, J., From instantons to exact results, Analyse algébrique des perturbations singulières I: Méthodes résurgentes, (1994), Hermann Paris, p. 51-68 · Zbl 0831.34090
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.