×

zbMATH — the first resource for mathematics

Physical aspects of the space-time torsion. (English) Zbl 0977.83072
Summary: We review many quantum aspects of torsion theory and discuss the possibility of the space-time torsion to exist and to be detected. The paper starts, in Section 2, with a pedagogical introduction to the classical gravity with torsion, that includes also interaction of torsion with matter fields. Special attention is paid to the conformal properties of the theory. In Section 3, the renormalization of quantum theory of matter fields and related topics, like renormalization group, effective potential and anomalies, are considered.
Section 4 is devoted to the action of spinning and spinless particles in a space-time with torsion, and to the discussion of possible physical effects generated by the background torsion. In particular, we review the upper bounds for the magnitude of the background torsion which are known from the literature.
In Section 5, the comprehensive study of the possibility of a theory for the propagating completely antisymmetric torsion field is presented. It is supposed that the propagating field should be quantized, and that its quantum effects must be described by, at least, some effective low-energy quantum field theory. We show, that the propagating torsion may be consistent with the principles of quantum theory only in the case when the torsion mass is much greater than the mass of the heaviest fermion coupled to torsion. Then, universality of the fermion-torsion interaction implies that torsion itself has a huge mass, and cannot be observed in realistic experiments. Thus, the theory of quantum matter fields on the classical torsion background can be formulated in a consistent way, while the theory of dynamical torsion meets serious obstacles.
In Section 6, we briefly discuss the string-induced torsion and the possibility to induce torsion action and torsion itself through the quantum effects of matter fields.

MSC:
83E05 Geometrodynamics and the holographic principle
83C45 Quantization of the gravitational field
PDF BibTeX XML Cite
Full Text: DOI arXiv
References:
[1] Adler, S.L., Axial vector vertex in spinor electrodynamics, Phys. rev., 177, 2426, (1969)
[2] Adler, S.L., Einstein gravity as a symmetry breaking effect in quantum field theory, Rev. mod. phys., 54, 729, (1982)
[3] Adler, S.; Bardeen, W.A., Absence of higher order corrections in the anomalous axial vector divergence equation, Phys. rev., 182, 1517, (1969)
[4] Alekseev, D.V.; Shapiro, I.L., Renormalization group approach in curved space – time with torsion, Izv. vuzov fiz. (sov. J. phys.), 33, 3, 34, (1990)
[5] ALEPH Collaboration, Phys. Lett. B 378 (1996) 373.
[6] Arefieva, I.Ya.; Slavnov, A.A.; Faddeev, L.D., Generating functional for the S-matrix in gauge-invariant theories, Theor. math. fiz., 21, 311, (1974)
[7] Assad, M.J.D.; Letelier, P.S., On a class of inflationary universes of the selfconsistent einstein – cartan theory, Phys. lett. A, 145, 74, (1990)
[8] Asorey, M.; López, J.L.; Shapiro, I.L., Some remarks on high derivative quantum gravity, Int. J. mod. phys. A, 12, 5711, (1997) · Zbl 0902.53066
[9] Asorey, M.; Falceto, F., Consistency of the regularization of gauge theories by high covariant derivatives, Phys. rev. D, 54, 5290, (1996)
[10] Avramidi, I.G., Heat kernel and quantum gravity, (2000), Springer Berlin · Zbl 0862.58054
[11] Audretsch, J., Dirac electron in space – time with torsion: spinor propagation, spin precession and nongeodesic orbits, Phys. rev. D, 24, 1470, (1981)
[12] V.G. Bagrov, I.L. Buchbinder, I.L. Shapiro, On the possible experimental manifestations of the torsion field at low energies, Izv. VUZov, Fisica-Sov. J. Phys. 35 (1992) 5, hep-th/9406122.
[13] R. Balbinot, A. Fabbri, I.L. Shapiro, Anomaly induced effective actions and Hawking radiation, hep-th/9904074, Phys. Rev. Lett. 83 (1999) 1494; Vacuum polarization in Schwarzschild space – time by anomaly induced effective actions and Hawking radiation. Nucl. Phys. B 559 (1999) 301. · Zbl 0957.81012
[14] Barger, V.; Cheung, K.; Hagiwara, K.; Zeppenfeld, D., Global study of electron – quark contact interactions, Phys. rev. D, 57, 391, (1998)
[15] Barvinsky, A.O.; Vilkovisky, G.A., The generalized schwinger – dewitt technique in gauge theories and quantum gravity, Phys. rep., 119, 1, (1985)
[16] Bell, J.; Jackiw, R., A PCAC puzzle: PI0-GAMMA GAMMA in the sigma model, Nuovo cimento A, 60, 47, (1969)
[17] A.S. Belyaev, I.L. Shapiro, The action for the (propagating) torsion and the limits on the torsion parameters from present experimental data, Phys. Lett. B 425 (1998) 246; Torsion action and its possible observables, Nucl. Phys. B 543 (1999) 20.
[18] Berestetsky, V.B.; Lifshits, E.M.; Pitaevsky, L.P., Quantum electrodynamics, (1980), Nauka Moscow
[19] Berezin, F.A., Feynman path integral in a phase space, Uspekhi fiz. nauk., 132, 497, (1980)
[20] Berezin, F.A.; Marinov, M.S., Particle spin dynamics as the Grassmann variant of classical mechanics, Ann. phys. (N.Y.), 104, 336, (1977) · Zbl 0354.70003
[21] de Berredo-Peixoto, G.; Helayel-Neto, J.A.; Shapiro, I.L., On the consistency of a fermion – torsion effective theory, Jhep, 02, 003, (2000) · Zbl 0961.81053
[22] Birell, N.D.; Davies, P.C.W., Quantum fields in curved space, (1982), Cambridge Univ. Press Cambridge · Zbl 0476.53017
[23] Bjorken, J.M.; Drell, S.D., Relativistic quantum mechanics, (1964), McGraw-Hill Book Company New York · Zbl 0184.54201
[24] R. Bluhm, Lorentz and CPT tests in atomic systems, Presented as “Symmetries in Subatomic Physics, Adelaide, Australia, March 2000”, hep-ph/0006033.
[25] Bluhm, R.; Kostelecky, V.A., Lorentz and CPT tests with spin-polarized solids, Phys. rev. lett., 84, 1381, (2000)
[26] Boulware, D., Renormalizability of massive non-abelian gauge fields: a functional integral approach, Ann. phys. (NY), 56, 140, (1970)
[27] Brown, L.S.; Collins, J.C., Dimensional regularization of scalar field theory in curved space – time, Ann. phys. (NY), 130, 215, (1980)
[28] L. Brink, S. Deser, B. Zumino, P. di Vecchia, P. Howe, Local supersymmetry for spinning particles, Phys. Lett. B 64 (1976) 435; A. Barducci, R. Casalbuoni, L. Lusanna, Supersymmetries and the pseudoclassical relativistic electron, Nuovo Cimento A 35 (1976) 377; M. Henneaux, C. Teitelboim, Relativistic quantum mechanics of supersymmetric particles, Ann. Phys. 143 (1982) 127; D.M. Gitman, I.V. Tyutin, Quantization of Fields with Constraints, Springer, Berlin, 1990; J.W. van Holten, BRST field theory of relativistic particles, Int. J. Mod. Phys. A 7 (1992) 7119.
[29] Buchbinder, I.L., On renormalization group equations in curved space – time, Theor. math. phys., 61, 393, (1984)
[30] Buchbinder, I.L.; Odintsov, S.D., Asymptotical freedom and asymptotical conformal invariance in curved space – time, Izw. vuzov. fiz. (sov. phys. J.), 26, 12, 108, (1983)
[31] Buchbinder, I.L.; Odintsov, S.D.; Shapiro, I.L., Nonsingular cosmologial model induced by vacuum quantum effect in curved space – time with torsion, Phys. lett. B, 162, 92, (1985)
[32] Buchbinder, I.L.; Odintsov, S.D.; Shapiro, I.L., Calculation of effective potential in an external gravitational field with torsion and phase transition induced by external fields, Izv. vuzov. fiz.-sov. J. phys., 30, 3, 3, (1987)
[33] Buchbinder, I.L.; Odintsov, S.D.; Shapiro, I.L., Effective action in quantum gravity, (1992), IOP Publishing Bristol · Zbl 0795.53078
[34] Buchbinder, I.L.; Shapiro, I.L., One-loop calculation of graviton self energy in the first order gravity formalism, Yad. fiz.- sov. J. nucl. phys., 37, 248, (1983)
[35] Buchbinder, I.L.; Shapiro, I.L., On the renormalization of the models of quantum field theory in an external gravitational field with torsion, Phys. lett. B, 151, 263, (1985)
[36] Buchbinder, I.L.; Shapiro, I.L., On renormalization of quantum field theory model in curved space – time with torsion, Izw. vuzov fiz. (sov. J. phys.), 28, 8, 94, (1985)
[37] Buchbinder, I.L.; Shapiro, I.L., On the asymptotical freedom in the einstein – cartan theory, Izv. vuzov fizika (sov. J. phys.), 31, 9, 40, (1988)
[38] Buchbinder, I.L.; Shapiro, I.L., On the renormalization group equations in curved space – time with torsion, Class. quant. grav., 7, 1197, (1990) · Zbl 0703.53080
[39] Buchbinder, I.L.; Shapiro, I.L.; Yagunov, E.G., The asymptotically free and asymptotically conformally invariant grand unification theories in curved space – time, Mod. phys. lett. A, 5, 1599, (1990)
[40] Buchbinder, I.L.; Wolfengaut, Yu.Yu., Renormalization group equations and effective action in curved space – time, Class. quant. grav., 5, 1127, (1988)
[41] Callan, C.; Friedan, D.; Martinec, E.; Perry, M., Strings in background fields, Nucl. phys. B, 272, 593, (1985)
[42] Capper, D.M.; Kimber, D., An ambiguity in one loop quantum gravity, J. phys. A, 13, 3671, (1980)
[43] S. Capozziello, G. Lambiase, C. Stornaiolo, Geometric classification of the torsion tensor of space – time, gr-qc/0101038. · Zbl 0974.83035
[44] Carroll, S.M.; Field, G.B., Consequences of propagating torsion in connection dynamic theories of gravity, Phys. rev. D, 50, 3867, (1994)
[45] O. Chandia, J. Zanelli, Phys. Rev. D 55 (1997) 7580; Supersymmetric particle in a space – time with torsion and the index theorem, Phys. Rev. D 58 (1998) 045014.
[46] Chang, L.N.; Lebedev, O.; Loinaz, W.; Takeuchi, T., Universal torsion-induced interaction from large extra dimensions, Phys. rev. lett., 85, 3765, (2000) · Zbl 1369.83086
[47] Christensen, S.M., Second and fourth order invariants on curved manifolds with torsion, J. phys. A, 13, 3001, (1980) · Zbl 0445.53050
[48] Chupp, T.E., Results of a new test of local Lorentz invariance, A search for mass anisotropy in ^{21}ne, Phys. rev. lett., 63, 1541, (1989)
[49] Cognola, G.; Giacconi, P., Nonabelian anomalies on a curved space – time with torsion, Phys. rev. D, 39, 2987, (1989)
[50] Cognola, G.; Zerbini, S., Some physical applications of the heat kernel expansion, Mod. phys. lett. A, 3, 599, (1988)
[51] G. Cognola, S. Zerbini, Heat kernel expansion in geometric fields, Phys. Lett. B 195 (1987) 435; Seeley-DeWitt coefficients in a Riemann-Cartan space – time, Phys. Lett. B 214 (1988) 70.
[52] Coleman, S.; Weinberg, E., Radiative corrections as the origin of spontaneous symmetry breaking, Phys. rev. D, 7, 1888, (1973)
[53] Collins, J.C., Renormalization, (1984), Cambridge University Press Cambridge
[54] Curtright, T.L.; Zachos, C.K., Geometry, topology and supersymmetry in nonlinear models, Phys. rev. lett., 53, 1799, (1984)
[55] B.K. Datta, I. Noether’s theorem and the conservation laws in Riemann-Cartan space, Nuovo Cimento 6B (1971) 1; II. Generalized field equations and applications to the Dirac field ibid, 16.
[56] Denardo, G.; Spallucci, E., Curvature and torsion from matter, Class. quant. grav., 4, 89, (1987) · Zbl 0614.53057
[57] Deser, S., Scale invariance and gravitational coupling, Ann. phys. (NY), 59, 248, (1970)
[58] Deser, S.; Duff, M.J.; Isham, C., Nonlocal conformal anomalies, Nucl. phys. B, 111, 45, (1976) · Zbl 0967.81529
[59] Deser, S.; van Nieuwenhuisen, P., One-loop divergences of quantized einstein – maxwell fields, Phys. rev. D, 10, 401, (1974)
[60] Deser, S.; Redlich, A.N., String induced gravity and ghost freedom, Phys. lett. B, 176, 350, (1986)
[61] Deser, S.; Zumino, B., Consistent supergravity, Phys. lett. B, 62, 335, (1976)
[62] DeWitt, B.S., Dynamical theory of groups and fields, (1965), Gordon and Breach London · Zbl 0169.57101
[63] A. Dobado, A.L. Maroto, Mod. Phys. Lett. A 12 (1997) 3003; Primordial torsion fileds as an explanation of the anisotropy in electromagnetic propagation over cosmological distance, Mod. Phys. Lett. A 12 (1997) 3003.
[64] A. Dobado, A. Maroto, Phys. Rev. D 54 (1996) 5185; Standard model anomalies in curved space – time with torsion, Phys. Rev. D 54 (1996) 5185.
[65] Dobado, A.; Maroto, A.L., Nonlocal low-energy effective action for gravity with torsion, Class. quant. grav., 16, 4057, (1999) · Zbl 0937.83039
[66] Donoghue, J.F., General relativity as an effective field theory: the leading quantum corrections, Phys. rev. D, 50, 3874, (1994)
[67] Donoghue, J.F.; Golowich, E.; Holstein, B.R., Dynamics of the standard model, (1992), Cambridge University Press Cambridge · Zbl 0875.53008
[68] M.J. Duff, Observations on conformal anomalies, Nucl. Phys. B 125 (1977) 334; Twenty years of Weyl anomaly, Class. Quant. Grav. 11 (1994) 1387.
[69] Eichten, E.; Lane, K.; Peskin, M., New tests for quark and lepton substructure, Phys. rev. lett., 50, 811, (1983)
[70] J.C. Fabris, A.M. Pelinson, I.L. Shapiro, Anomaly induced effective action for gravity and inflation, Grav. Cosmol. 6 (2000) 59, gr-qc/9810032; On the gravitational waves on the background of anomaly-induced inflation, Nucl. Phys. B 597 (2001) 539. · Zbl 0965.83039
[71] Faddeev, L.D.; Slavnov, A.A., Gauge fields, introduction to quantum theory, (1980), Benjamin/Cummings Mento Park, CA · Zbl 0486.53052
[72] Fradkin, E.S.; Gitman, D.M., Path integral representation for the relativistic particle propagators and BFV quantization, Phys. rev. D, 44, 3230, (1991)
[73] Fradkin, E.S.; Shvartsman, Sh.M., Effective action of a relativistic spinning particle in a gravitational field with torsion, Class. quant. grav., 9, 17, (1992)
[74] Fradkin, E.S.; Tseytlin, A.A., Conformal anomaly in Weyl theory and anomaly free superconformal theories, Phys. lett. B, 134, 187, (1984) · Zbl 0967.83513
[75] Fradkin, E.S.; Tseytlin, A.A., Quantum string theory effective action, Nucl. phys. B, 261, 1, (1985) · Zbl 0967.81516
[76] Fujikawa, K., Path integral measure for gauge invariant fermion theories, Phys. rev. lett., 42, 1195, (1979)
[77] Fulling, S.A., Aspects of quantum field theory in curved space – time, (1989), Cambridge Univ. Press Cambridge · Zbl 0677.53081
[78] Garcia de Andrade, L.C., On Dilaton solutions of de Sitter inflation and primordial spin – torsion density fluctuations, Phys. lett. B, 468, 28, (1999) · Zbl 0993.83007
[79] Garcia de Andrade, L.C.; Oguri, V.; Lopes, M.; Hammond, R., On the energy splitting of spectral lines induced by the torsion field, Il. nuovo cimento B, 107, 1167, (1992)
[80] Jr. Gates, S.J.; Grisaru, M.T.; Rocek, M.; Siegel, W., Superspace, (1983), Benjamin-Cummings New York
[81] Geyer, B.; Gitman, D.M.; Shapiro, I.L., Path integral and pseudoclassical action for spinning particle in external electromagnetic and torsion fields, Int. J. mod. phys. A, 15, 3861, (2000) · Zbl 1010.83046
[82] Gitman, D.M., Path integrals and pseudoclassical description for spinning particles in arbitrary dimensions, Nucl. phys. B, 488, 490, (1997) · Zbl 0925.81063
[83] Gitman, D.M.; Saa, A., Quantization of spinning particle with anomalous magnetic momentum, Class. quant. grav., 10, 1447, (1993) · Zbl 1015.81502
[84] Goldthorpe, W.H., Spectral geometry and SO(4) gravity in a riemann – cartan space – time, Nucl. phys. B, 170, 307, (1980)
[85] Goroff, M.; Sagnotti, A., The ultraviolet behavior of Einstein gravity, Nucl. phys. B, 266, 709, (1986)
[86] Green, M.B.; Schwarz, J.H.; Witten, E., Superstring theory, (1987), Cambridge University Press Cambridge
[87] A.A. Grib, S.G. Mamaev, V.M. Mostepanenko, Quantum Effects in Intensive External Fields, Moscow, Atomizdat, 1980 (in Russian).
[88] Gross, D.J.; Jackiw, R., Effect of anomalies in quasirenormalizable theories, Phys. rev. D, 6, 477, (1972)
[89] V.P. Gusynin, Heat kernel expansion for nonminimal differential operators and manifolds with torsion, Phys. Lett. 225B (1989) 233; V.P. Gusynin, E.V. Gorbar, V.V. Romankov, Heat kernel expansion for nonminimal differential operators and manifolds with torsion, Nucl. Phys. B 362 (1991) 449.
[90] Hall, C.M., Lectures on non-linear sigma models and strings, (1987), DAMTP Cambridge
[91] Hammond, R., Upper limit on the torsion coupling constant, Phys. rev. D, 52, 6918, (1995)
[92] Hammond, R., Helicity flip cross-section from gravity with torsion, Class. quant. grav., 13, 1691, (1996) · Zbl 0858.53079
[93] Hawking, S.W.; Hawking, S.W.; Israel, W., General relativity, (1979), Cambridge Univ. Press Cambridge · Zbl 0424.53001
[94] Heil, W., Improved limits on the weak, neutral, hadronic axial vector coupling constants from quasielastic scattering of polarized electrons, Nucl. phys. B, 327, 1, (1989)
[95] F.W. Hehl, Spin and torsion in General Relativity: I, Foundations, Gen. Relat. Grav. 4 (1973) 333; Spin and torsion in General Relativity: II, Geometry and field equations, ibid 5 (1974) 491; F.W. Hehl, P. Heide, G.D. Kerlick, J.M. Nester, General relativity with spin and torsion: foundations and prospects, Rev. Mod. Phys. 48 (1976) 393; F. Gronwald, F.W. Hehl, On the gauge aspects of gravity, Talk given at International School of Cosmology and Gravitation: 14th Course: Quantum Gravity, Erice, Italy, 11-19 May 1995, gr-qc/9602013.
[96] Hehl, F.W.; McCrea, J.D.; Mielke, E.W.; Neeman, Yu., Metric affine gauge theory of gravity: field equations, Noether identities, world spinors and breaking of Dilaton invariance, Phys. rep., 258, 1, (1995)
[97] J.A. Helayel-Neto, Broken N=4 Yang-Mills theory: two-loop finiteness. Il, Nuovo Cimento 81A (1984) 533; J.A. Helayel-Neto, I.G. Koh, H. Nishino, Locally supersymmetric grand unified theory with two-loop stable mass hierarchy, Phys. Lett. B 131 (1984) 75.
[98] Helayel-Neto, J.A.; Penna-Firme, A.; Shapiro, I.L., Conformal symmetry, anomaly and effective action for metric-scalar gravity with torsion, Phys. lett. B, 479, 411, (2000) · Zbl 0960.83030
[99] Hill, C.T.; Salopek, D.S., Calculable nonminimal coupling of composite scalar bosons to gravity, Ann. phys., 213, 21, (1992)
[100] Hojman, S.; Rosenbaum, M.; Ryan, M.P., Gauge invariance, minimal coupling and torsion, Phys. rev. D, 17, 3141, (1978)
[101] Honerkamp, J., Chiral multi-loop, Nucl. phys. B, 36, 130, (1972)
[102] G. t’Hooft, M. Veltman, Regularization and renormalization of gauge fields, Nucl. Phys. B 44 (1972) 189; C.G. Bollini, J.J. Giambiagi, Dimensional renormalization: the number of dimension as a regularizing parameter, Nuovo Cimento B 12 (1972) 20.
[103] t’Hooft, G.; Veltman, M., One-loop divergences in the theory of gravitation, Ann. inst. H. poincare A, 20, 69, (1974)
[104] Ishikawa, K., Gravitational effect on effective potential, Phys. rev. D, 28, 2445, (1983)
[105] Itzykson, C.; Zuber, J.-B., Quantum field theory, (1980), McGraw-Hill New York · Zbl 0453.05035
[106] Ivanenko, D.I.; Sardanashvily, G., The gauge treatment of gravity, Phys. rep., 94, 1, (1983)
[107] Jones, D.R.T.; Lowrence, A.M., Field redefinition dependence of the low-energy string effective action, Z. phys. C, 42, 153, (1989)
[108] Kaku, M.; Tawnsend, P.K.; van Nieuwenhuizen, P., Properties of conformal supergravity, Phys. rev. D, 17, 3179, (1978)
[109] Kallosh, R., The renormalization in nonabelian gauge theories, Nucl. phys. B, 78, 293, (1974)
[110] Ketov, S.V., Quantum non-linear sigma models: from quantum field theory to supersymmetry, conformal field theory, black holes, and strings, (2000), Springer Berlin · Zbl 1008.81503
[111] Kibble, T.W., Lorentz invariance and the gravitational field, J. math. phys., 2, 212, (1961) · Zbl 0095.22903
[112] Kimura, T., Conformal and axial anomalies in riemann – cartan space, Progr. theor. phys., 66, 2011, (1981)
[113] Kirzhnits, D.A., Superconductivity and elementary particles, Uspehi fiz. nauk. (sov. phys.-USPEHI), 125, 169, (1978)
[114] V.A. Kostolecky, Recent Results in Lorentz and CPT Tests. Presented at “Orbis Scientiae, 1999, Fort Luderdale, Florida, December 1997”, hep-ph/0005280.
[115] V.A. Kostelecky, R. Potting, CPT and strings, Nucl. Phys. B 359 (1991) 545; Expectation values, Lorentz invariance, and CPT in the open bosonic string, Phys. Lett. B 381 (1996) 389; D. Colladay, V.A. Kostelecky, CPT violation and the Standard Model, Phys. Rev. D 55 (1997) 6760; V.A. Kostelecky, Theory and tests of CPT and Lorentz violations, Talk presented at CPT 98, Indiana, 1998, hep-ph/9904467.
[116] Lammerzahl, C., Constraints on space – time torsion from hughes – drever experiments, Phys. lett. A, 228, 223, (1997) · Zbl 0963.83033
[117] P. Langacker, J. Erler, Unification or Compositeness? (Presented at the Ringberg Workshop on the Higgs Puzzle, Ringberg, Germany, 12/96, hep-ph/9703428.)
[118] Langasker, P.; Luo, M.; Mann, A., High precision electroweak experiments: a global search for new physics beyond the standard model, Rev. mod. phys., 64, 86, (1992)
[119] Leibbrandt, G., Introduction to the technique of dimensional regularization, Mod. phys. rep., 47, 849, (1975)
[120] LEP Collaborations, SLD Collaboration, A Combination of Preliminary Electroweak Measurements and Constrains on the Standard Model, prepared from contributions to the 28th International Conference on High Energy Physics, Warsaw, Poland, CERN-PPE/96-183, December 1996.
[121] The LEP Electroweak Working Group, CERN-PPE/97-154, 1997.
[122] L3 Collaboration, Measurement of hadron and lepton-pair production at \(130 GeV<s<140 GeV\) at LEP, Phys. Lett. B 370 (1996) 195.
[123] Maroto, A.L.; Shapiro, I.L., On the inflationary solutions in higher-derivative gravity with Dilaton field, Phys. lett. B, 414, 34, (1997)
[124] Mavromatos, N.E., A note on the atiyah – singer index theorem for manifolds with totally antisymmetric torsion, J. phys. A, 21, 2279, (1988) · Zbl 0679.58044
[125] K.S. McFarland et al., (CCFR), A precision measurement of electroweak parameters in neutrino – nucleon scattering, FNAL-Pub-97/001-E, hep-ex/9701010.
[126] Modanese, G., Stability issues in Euclidean quantum gravity, Phys. rev. D, 59, 024004, (1999)
[127] Muta, T.; Odintsov, S.D., Model dependence of the nonminimal scalar graviton effective coupling constant in curved space – time, Mod. phys. lett. A, 6, 3641, (1991) · Zbl 1020.81732
[128] Nevill, D.E., Gravity Lagrangian with ghost-free curvature-squared term, Phys. rev. D, 18, 3535, (1978)
[129] Nevill, D.E., Gravity theories with propagating torsion, Phys. rev. D, 21, 867, (1980)
[130] D.E. Nevill, Spin-2 propagating torsion, Phys. Rev. D 23 (1981) 1244; D 25 (1982) 573.
[131] Nieh, H.T.; Yan, M.L., Quantized Dirac field in curved riemann – cartan background. I. symmetry properties, Green’s function, Ann. phys., 138, 237, (1982)
[132] van Nieuwenhuizen, P., Supergravity, Phys. rep. C, 68, 189, (1981)
[133] Nikitin, A.G., On exact foldy – wouthuysen transformation, J. phys. A, 31, 3297, (1998) · Zbl 0927.35123
[134] Nodland, B.; Ralston, J., Indication of anisotropy in electromagnetic propagation over cosmological distances, Phys. rev. lett., 78, 3043, (1997)
[135] Novello, M., Scalar and massless vector fields in Cartan space, Phys. lett. A, 59, 105, (1976)
[136] Obukhov, Yu.N.; Pronin, P.P., Renormalization of gauge field theories in riemann – cartan space – time. 1. abelian models, Acta. phys. Pol. B, 19, 341, (1988)
[137] Obukhov, Yu.N., Conformal invariance and space time torsion, Phys. lett. A, 90, 13, (1982)
[138] Yu.N. Obukhov, Spectral geometry of the Riemann-Cartan spacetime and the axial anomaly, Phys. Lett. 108B (1982) 308; Spectral geometry of the Riemann-Cartan spacetime, Nucl. Phys. B 212 (1983) 237.
[139] Obukhov, Yu.N.; Mielke, E.W.; Budczies, J.; Hehl, F.W., On the chiral anomaly in non-riemannien spacetimes, Found. phys., 27, 1221, (1997)
[140] Odintsov, S.D.; Shapiro, I.L., Curvature induced phase transition in quantum R2-gravity and the induced Einstein gravity, Theor. math. phys., 90, 148, (1992) · Zbl 0795.53078
[141] OPAL Collaboration: G. Alexander et al., Production of fermion-pair events in e+e− collisions at \(161 GeV\) centre-of-mass energy, Phys. Lett. B 391 (1996) 221.
[142] H. Osborn, Nucl. Phys. B 294 (1987) 595; B 308 (1988) 629.
[143] Palle, D., On primordial cosmological density fluctuations in the einstein – cartan gravity and cobe data, Nuovo cimemto B, 114, 853, (1999)
[144] Park, C.J.; Yoon, Y., Conformal couplings in induced gravity, Gen. rel. grav., 29, 765, (1997) · Zbl 0879.53062
[145] Parker, L.; Toms, D.J., Renormalization group analysis of grand unified theories in curved space – time, Phys. rev. D, 29, 1584, (1984)
[146] K. Peeters, A. Waldron, Spinors on manifolds with boundary: APS index theorems with torsion, JHEP 9902 (1999) 024; J.W. van Holten, A. Waldron, K. Peeters, An index theorem for non-standard Dirac operators, Class. Quant. Grav. 16 (1999) 2537. · Zbl 0959.58033
[147] V.N. Ponomarev, A.O. Barvinsky, Yu.N. Obukhov, Geometrodynamical Methods and Gauge Approach to Gravity Interaction Theory, Energoatomizdat, Moscow, 1985.
[148] Prescott, C.Y., Further measurements of parity nonconservation in inelastic electron scattering, Phys. lett. B, 84, 524, (1979)
[149] Reigert, R.J., A non-local action for the trace anomaly, Phys. lett. B, 134, 56, (1980)
[150] Rietdijk, R.H.; van Holten, J.W., Killing tensors and a new geometric duality, Nucl. phys. B, 472, 427, (1996) · Zbl 0996.53520
[151] Romanov, V.N.; Schwarts, A.S., Anomalies and elliptic operators, Theor. math. fiz., 41, 170, (1979)
[152] Rumpf, H., Supersymmetric Dirac particles in riemann – cartan space – time, Gen. relat. grav., 14, 773, (1982) · Zbl 0491.53029
[153] H. Rumpf, Creation of Dirac particles in general relativity with torsion and electromagnetism. I. The general formalism, Gen. Relat. Grav. 10 (1979) 509; Creation of Dirac particles in general relativity with torsion and electromagnetism. II. The constant electric field—a pedagogical example, 10 (1979) 525; Creation of Dirac particles in general relativity with torsion and electromagnetism. III. Matter production in a model of torsion, 10 (1979) 647.
[154] Ryder, L.H.; Shapiro, I.L., On the interaction of massive spinor particles with external electromagnetic and torsion fields, Phys. lett. A, 247, 21, (1998)
[155] de Sabbata, V.; Pronin, P.I.; Siveram, C., Neutron interferometry in gravitational field with torsion, Int. J. theor. phys., 30, 1671, (1991)
[156] de Sabbata, V.; Siveram, C., Torsion and inflation, Astron. space sci., 176, 141, (1991)
[157] Sezgin, E.; van Nieuwenhuizen, P., New ghost-free gravity Lagrangian with propagating torsion, Phys. rev. D, 21, 3269, (1981)
[158] Sezgin, E., Class of ghost-free gravity Lagrangians with massive or massless propagating torsion, Phys. rev. D, 24, 1677, (1981)
[159] I.L. Shapiro, in: P. Fayet, J. Gates, S. Duplij (Eds.), Quantum Gravity: Traditional Approach, Review article for the “Concise Encyclopedia on SUPERSYMMETRY”. Kluwer Academic Publishers, Dordrecht, to be published.
[160] Shapiro, I.L., On the interaction of torsion with matter fields: NJL model, Modern phys. lett. A, 9, 729, (1994)
[161] I.L. Shapiro, Renormalization and renormalization group in the models of quantum gravity, Ph.D. Dissertation, Tomsk State University, Russia, 1985, 1-158.
[162] Shapiro, I.L.; Cognola, G., Back reaction of vacuum and the renormalization group flow from the conformal fixed point, Class. quant. grav., 15, 3411, (1998) · Zbl 1061.81537
[163] Shapiro, I.L.; Takata, H., Conformal transformation in gravity, Phys. lett. B, 361, 31, (1996)
[164] Singh, P.; Ryder, L.H., Einstein – cartan – dirac theory in the low-energy limit, Class. quant. grav., 14, 3513, (1997) · Zbl 0904.53064
[165] Skinner, R.; Grigorash, D., Generalized einstein – cartan field equations, Phys. rev. D, 14, 3314, (1976)
[166] Slavnov, A.A., Invariant regularization of non-linear chiral theories, Nucl. phys. B, 31, 301, (1971)
[167] Soleng, H.H.; Eeg, I.O., Skewons and gravitons, Acta phys. Pol., 23, 87, (1992)
[168] Souder, W.P.A., Measurement of parity violation in the elastic scattering of polarized electrons from ^{12}C, Phys. rev. lett., 65, 694, (1990)
[169] Starobinski, A.A., A new type of isotropic cosmological models without singularity, Phys. lett. B, 91, 99, (1980) · Zbl 1371.83222
[170] Stelle, K.S., Renormalization of higher derivative quantum gravity, Phys. rev. D, 16, 953, (1977)
[171] Tseytlin, A.A., On the poincare and de Sitter gauge theories of gravity with propagating torsion, Phys. rev. D, 26, 3327, (1982)
[172] Tseytlin, A.A., Ambiguity in the effective action in string theories, Phys. lett. B, 176, 92, (1986)
[173] Tseytlin, A.A., Sigma model approach to string theory, Int. J. mod. phys. A, 4, 1257, (1989)
[174] Utiyama, R., Invariant theoretical interpretation of interaction, Phys. rev., 101, 1597, (1956) · Zbl 0070.22102
[175] Vilkovisky, G.A., Effective action in quantum gravity, Class. quant. grav., 9, 895, (1992)
[176] Volovik, G.E., On induced CPT-odd chern – simons terms in the 3+1 effective action, JETP lett., 70, 1, (1999)
[177] B.L. Voronov, P.M. Lavrov, I.V. Tyutin, Canonical transformations and the gauge dependence in general gauge theories, Yad. Fiz. (Sov. J. Nucl. Phys.) 36 (1982) 498; J. Gomis, S. Weinberg, Are nonrenormalizable gauge theories renormalizable? Nucl. Phys. B 469 (1996) 473. · Zbl 0588.53079
[178] Voronov, B.L.; Tyutin, I.V., Models of asymptotically free massive fields, Yad. fiz. (sov. J. nucl. phys.), 23, 664, (1976)
[179] Voronov, B.L.; Tyutin, I.V., On renormalization of R2 gravitation, Yad. fiz. (sov. J. nucl. phys.), 39, 998, (1984)
[180] Wald, R.M., General relativity, (1984), University of Chicago Press Chicago
[181] Weinberg, S.; Hawking, S.W.; Israel, W., General relativity, (1979), Cambridge University Press Cambridge · Zbl 0424.53001
[182] Weinberg, S., The quantum theory of fields: foundations, (1995), Cambridge Univ. Press Cambridge
[183] Wess, J.; Zumino, B., Consequences of anomalous Ward identities, Phys. lett. B, 37, 95, (1971)
[184] Wetterich, C., Effective nonlocal Euclidean gravity, Gen. rel. grav., 30, 159, (1998) · Zbl 0925.53034
[185] Wolf, C., Gen. rel. grav., 27, 1031, (1995)
[186] Yajima, S., Mixed anomalies in four-dimensional and six-dimensional space with torsion, Progr. theor. phys., 79, 535, (1988)
[187] Yajima, S.; Kimura, T., Anomalies in four-dimensional curved space with torsion, Progr. theor. phys., 74, 866, (1985) · Zbl 0979.81551
[188] Yasskin, Ph.B.; Stoeger, W.R., Propagation equations for test bodies with spin and rotation in theories of gravity with torsion, Phys. rev. D, 21, 2081, (1980)
[189] Zwiebach, B., Phys. lett. B, 156, 315, (1985)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.