×

zbMATH — the first resource for mathematics

Simulation of pedestrian dynamics using a two-dimensional cellular automaton. (English) Zbl 0978.90018
Summary: We propose a two-dimensional cellular automaton model to simulate pedestrian traffic. It is a \(v_{max}=1\) model with exclusion statistics and parallel dynamics. Long-range interactions between the pedestrians are mediated by a so-called floor field which modifies the transition rates to neighbouring cells. This field, which can be discrete or continuous, is subject to diffusion and decay. Furthermore it can be modified by the motion of the pedestrians. Therefore, the model uses an idea similar to chemotaxis, but with pedestrians following a virtual rather than a chemical trace. Our main goal is to show that the introduction of such a floor field is sufficient to model collective effects and self-organization encountered in pedestrian dynamics, e.g. lane formation in counterflow through a large corridor. As an application we also present simulations of the evacuation of a large room with reduced visibility, e.g. due to failure of lights or smoke.

MSC:
90B20 Traffic problems in operations research
37B15 Dynamical aspects of cellular automata
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Wolf, D.E.; Schreckenberg, M.; Bachem (Eds.), A., Traffic and granular flow, (1996), World Scientific Singapore
[2] Schreckenberg, M.; Wolf (Eds.), D.E., Traffic and granular flow ’97, (1998), Springer Berlin
[3] Helbing, D.; Herrmann, H.J.; Schreckenberg, M.; Wolf (Eds.), D.E., Traffic and granular flow ’99: social, traffic, and granular dynamics, (2000), Springer Berlin · Zbl 0942.00072
[4] D. Helbing, Verkehrsdynamik: Neue Physikalische Modellierungskonzepte, Springer, Berlin, 1997 (in German). · Zbl 0873.90034
[5] Chowdhury, D.; Santen, L.; Schadschneider, A., Phys. rep., 329, 199, (2000)
[6] Schadschneider, A., Physica A, 285, 101, (2000)
[7] Nagel, K.; Esser, J.; Rickert, M., (), 151
[8] D. Helbing, .
[9] Nagel, K.; Schreckenberg, M., J. phys. I, 2, 2221, (1992)
[10] Biham, O.; Middleton, A.A.; Levine, D., Phys. rev. A, 46, R6124, (1992)
[11] Schreckenberg, M.; Schadschneider, A.; Nagel, K.; Ito, N., Phys. rev. E, 51, 2939, (1995)
[12] Derrida, B., Phys. rep., 301, 65, (1998)
[13] Helbing, D.; Molnar, P., Phys. rev. E, 51, 4282, (1995)
[14] Helbing, D.; Schweitzer, F.; Keltsch, J.; Molnar, P., Phys. rev. E, 56, 2527, (1997)
[15] Helbing, D.; Keltsch, J.; Molnar, P., Nature, 388, 47, (1997)
[16] Ben-Jacob, E., Contemp. phys., 38, 205, (1997)
[17] Fukui, M.; Ishibashi, Y., J. phys. soc. jpn., 68, 2861, (1999)
[18] Fukui, M.; Ishibashi, Y., J. phys. soc. jpn., 68, 3738, (1999)
[19] Muramatsu, M.; Irie, T.; Nagatani, T., Physica A, 267, 487, (1999)
[20] Muramatsu, M.; Nagatani, T., Physica A, 275, 281, (2000) · Zbl 1052.90530
[21] Muramatsu, M.; Nagatani, T., Physica A, 286, 377, (2000) · Zbl 1052.90530
[22] Klüpfel, H.; Meyer-König, T.; Wahle, J.; Schreckenberg, M., ()
[23] Henderson, L.F., Nature, 229, 381, (1971)
[24] Henderson, L.F.; Lyons, D.J., Nature, 240, 353, (1972)
[25] Helbing, D.; Farkas, I.; Vicsek, T., Nature, 407, 487, (2000)
[26] U. Weidmann, Transporttechnik der Fussgänger, Schriftenreihe des IVT, Vol. 80, ETH, Zürich, 1992.
[27] Gipps, P.G.; Marksjös, B., Math. comput. simulation, 27, 95, (1985)
[28] K. Bolay, Diploma Thesis, Stuttgart University, 1998; Java applets for the model can be found at
[29] D. Helbing, private communication.
[30] Helbing, D.; Vicsek, T., New J. phys., 1, 131, (1999)
[31] Bouchaud, J.-P.; Potters, M., Theory of financial risk, (2000), Cambridge University Press Cambridge
[32] C. Burstedde, Diploma Thesis, University of Cologne (2001); available for download at
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.