×

The Blasius function in the complex plane. (English) Zbl 0980.34053

This paper is devoted to the unique solution to the following nonlinear boundary value problem \[ 2f_{xxx}+ ff_{xx}= 0 \] with the conditions \(f(0)= f_x(0)= 0\) and \(f_x(\infty)= 1\).
The author gives a very interesting overview on the state of art of this solution which is called Blasius function. Aside to algebraic and analytic properties the reader can find essential numerical implementations and an analysis of problems with this. The image of the Blasius function in the complex plane is also studied sufficiently detailed.

MSC:

34E05 Asymptotic expansions of solutions to ordinary differential equations
34B15 Nonlinear boundary value problems for ordinary differential equations
76D10 Boundary-layer theory, separation and reattachment, higher-order effects
34M05 Entire and meromorphic solutions to ordinary differential equations in the complex domain
PDF BibTeX XML Cite
Full Text: DOI EuDML

References:

[1] Bairstow L., J. Royal Aeronautical Soc. 19 (1925)
[2] Baker G. A., Advances in Theoretical Physics 1 (1965)
[3] Baker G. A., Essentials of Padé Approximants (1975) · Zbl 0315.41014
[4] Bender C. M., Advanced Mathematical Methods for Scientists and Engineers (1978) · Zbl 0417.34001
[5] Blasius H., Zeitschrift fur Mathematik und Physik 56 (1908)
[6] DOI: 10.1016/0021-9991(82)90102-4 · Zbl 0488.65035
[7] Boyd J. P., Physica D 21 pp 227– (1986) · Zbl 0611.35080
[8] DOI: 10.1016/0021-9991(87)90002-7 · Zbl 0614.42013
[9] Boyd J. P., Chebyshev and Fourier spectral methods (1989) · Zbl 0681.65079
[10] DOI: 10.1006/jsco.1993.1054 · Zbl 0793.65084
[11] Boyd J. P., Computers and Physics 11 pp 299– (1997)
[12] Boyd J. P., Weakly nonlocal solitary waves and other exponentially small phenomena (1998)
[13] Boyd J. P., Acta Applicandae 56 (1999)
[14] DOI: 10.1063/1.525389 · Zbl 0492.70019
[15] Chang Y. F., Phys. D pp 183– (1983) · Zbl 0538.58031
[16] Drazin P. G., SIAM J. Appl. Math. 56 (1996) · Zbl 0858.65048
[17] Finlayson B. A., The method of weighted residuals and variational principles (1973) · Zbl 1286.49001
[18] Fournier J.-D., J. Phys. A 21 pp 33– (1988) · Zbl 0641.34034
[19] Haupt S. E., Wave Motion 10 pp 83– (1988) · Zbl 0628.76023
[20] DOI: 10.1137/0146058 · Zbl 0616.76049
[21] Hunter C., SIAM J. Appl. Math. 50 pp 1764– (1990) · Zbl 0725.34009
[22] DOI: 10.1017/S0022112082000159 · Zbl 0476.76031
[23] Meksyn D., Proc. R. Soc. A 237 pp 543– (1956) · Zbl 0073.31202
[24] Meksyn D., C. R. Acad. Sci. Paris 248 (16) pp 2286– (1959)
[25] Meksyn D., New methods in laminar boundary-layer theory (1961)
[26] Ostrowski A., C. R. Acad. Sci. Paris 227 pp 580– (1948)
[27] Piercy N. A. V., Philosophical Magazine 21 pp 995– (1936)
[28] Punnis B., Zeitschrift für Angewandte Mathematik und Mechanik 36 pp S26– (1956) · Zbl 0070.42802
[29] Punnis B., Arch. Math. pp 165– (1956) · Zbl 0070.42803
[30] Squire W., J. AeroSpace Sci. 26 pp 540– (1959)
[31] Squire W., J. AeroSpace Sci. 26 pp 678– (1959)
[32] Tabor M., Phys. Rev. A 24 pp 21– (1981)
[33] Töpfer K., Zeitschrift für Mathematik und Physik 60 pp 397– (1912)
[34] Treve Y. M., SIAM J. Appl. Math. 15 pp 1209– (1967) · Zbl 0189.38402
[35] DOI: 10.1093/qjmam/27.4.423 · Zbl 0295.65066
[36] DOI: 10.1137/0128060
[37] Van Dyke M., Perturbation methods in fluid mechanics,, 2. ed. (1975) · Zbl 0329.76002
[38] Van Dyke M., Lecture Notes in Math., Springer 594 pp 506– (1977)
[39] DOI: 10.1017/S0022112078001032 · Zbl 0374.76028
[40] DOI: 10.1146/annurev.fluid.16.1.287
[41] Van Dyke M., Engineering Science and Fluid Dynamics pp 355– (1990)
[42] DOI: 10.1073/pnas.27.12.578 · Zbl 0061.18003
[43] Weyl H., Proc. Natl. Acad. Sci. USA 28 pp 100– (1942)
[44] Weyl H., Ann. Math. 43 pp 381– (1942) · Zbl 0061.18002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.