The \(\nabla \cdot B=0\) constraint in shock-capturing magnetohydrodynamics codes. (English) Zbl 0980.76051

From the summary: Seven schemes to maintain the \(\nabla\cdot {\mathbf B}=0\) constraint numerically are compared. All these algorithms can be combined with shock-capturing Godunov type base schemes. They fall into three categories: the eight-wave formulation maintains the constraint to truncation error, the projection scheme enforces the constraint in some discretization by projecting the magnetic field, while the five different versions of the constrained transport/central difference type schemes conserve \(\nabla\cdot {\mathbf B}\) to machine accuracy in some discretization for every grid cell. It is shown that the three constrained transport algorithms can be recast into pure finite volume schemes, and the staggered representation of the magnetic field is unnecessary. Another two new and simple central difference based algorithms are introduced. The properties of the projection scheme are discussed in some detail, and we prove that it has the same order of accuracy as the base scheme, even for discontinuous solutions.


76M12 Finite volume methods applied to problems in fluid mechanics
76M20 Finite difference methods applied to problems in fluid mechanics
76W05 Magnetohydrodynamics and electrohydrodynamics
76L05 Shock waves and blast waves in fluid mechanics


Full Text: DOI


[1] Balsara, D.S., Linearized formulation of the Riemann problem for adiabatic and isothermal magnetohydrodynamics, Astrophys. J. suppl., 116, 119, (1998)
[2] Balsara, D.S., Total variation diminishing scheme for adiabatic and isothermal magnetohydrodynamics, Astrophys. J. suppl., 116, 133, (1998)
[3] Balsara, D.S.; Spicer, D.S., A staggered mesh algorithm using high order Godunov fluxes to ensure solenoidal magnetic fields in magnetohydrodynamic simulations, J. comput. phys., 149, 270, (1999) · Zbl 0936.76051
[4] Barmin, A.A.; Kulikovskiy, A.G.; Pogorelov, N.V., Shock-capturing approach and nonevolutionary solutions in magnetohydrodynamics, J. comput. phys., 126, 77, (1996) · Zbl 0863.76039
[5] Bell, J.B.; Colella, P.; Glaz, H.M., A second order projection method for the incompressible navier – stokes equations, J. comput. phys., 85, 257, (1989) · Zbl 0681.76030
[6] Boris, J.P.; Book, D.L., Flux-corrected transport. I. SHASTA, A fluid transport algorithm that works, J. comput. phys., 11, 38, (1973) · Zbl 0251.76004
[7] Brackbill, J.U.; Barnes, D.C., The effect of nonzero ∇·B on the numerical solution of the magnetohydrodynamic equations, J. comput. phys., 35, 426, (1980) · Zbl 0429.76079
[8] Brio, M.; Wu, C.C., An upwind differencing scheme for the equations of ideal magnetohydrodynamics, J. comput. phys., 75, 400, (1988) · Zbl 0637.76125
[9] Chorin, A.J., Numerical solution of the navier – stokes equations, Math. comp., 22, 745, (1968) · Zbl 0198.50103
[10] Dai, W.; Woodward, P.R., Extension of the piecewise parabolic method (PPM) to multidimensional magnetohydrodynamics, J. comput. phys., 111, 354, (1994)
[11] Dai, W.; Woodward, P.R., On the divergence-free condition and conservation laws in numerical simulations for supersonic magnetohydrodynamic flows, Astrophys. J., 494, 317, (1998)
[12] Dai, W.; Woodward, P.R., A simple finite difference scheme for multidimensional magnetohydrodynamic equations, J. comput. phys., 142, 331, (1998) · Zbl 0932.76048
[13] DeVore, C.R., Flux-corrected transport techniques for multidimensional compressible magnetohydrodynamics, J. comput. phys., 92, 142, (1991) · Zbl 0716.76056
[14] Evans, C.R.; Hawley, J.F., Simulation of magnetohydrodynamic flows: A constrained transport method, Astrophys. J., 332, 659, (1988)
[15] Gombosi, T.I.; Powell, K.G.; De Zeeuw, D.L., Axisymmetric modeling of cometary mass loading on an adaptively refined grid: MHD results, J. geophys. res., 99, 21,525, (1994)
[16] Harten, A., High resolution schemes for hyperbolic conservation laws, J. comput. phys., 49, 357, (1983) · Zbl 0565.65050
[17] Hestenes, M.R.; Stiefel, E., Methods of conjugate gradients for solving linear systems, J. res. natl. bur. stand., 49, 409, (1954) · Zbl 0048.09901
[18] Innes, D.E.; Tóth, G., Simulations of small-scale explosive events on the Sun, Solar phys., 185, 127, (1999)
[19] Keppens, R.; Goedbloed, J.P., Numerical simulations of stellar winds: polytropic models, Astron. astroph., 343, 251, (1999)
[20] Keppens, R.; Tóth, G., Using high performance Fortran for magnetohydrodynamic simulations, Parallel comput., 26, 705, (2000) · Zbl 0947.68572
[21] Keppens, R.; Tóth, G., Non-linear dynamics of Kelvin-Helmholtz unstable magnetized jets: three-dimensional effects, Phys. plasmas, 6, 1461, (1999)
[22] Keppens, R.; Tóth, G.; Westermann, R.H.J.; Goedbloed, J.P., Growth and saturation of the kelvin – helmholtz instability with parallel and anti-parallel magnetic fields, J. plasma phys., 61, 1, (1999)
[23] Keppens, R.; Tóth, G.; Botchev, M.A.; van der Ploeg, A., Implicit and semi-implicit schemes: algorithms, Int. J. numer. methods fluids, 30, 335, (1999) · Zbl 0951.76059
[24] Lax, P.D.; Wendroff, B., Systems of conservation laws, Comm. pure appl. math., 13, 217, (1960) · Zbl 0152.44802
[25] Londrillo, P.; Del Zanna, L., High-order upwind schemes for multidimensional magnetohydrodynamics, Astrophys. J., 530, 508, (2000)
[26] Molteni, D.; Tóth, G.; Kuznetsov, O.A., On the azimuthal stability of shock waves around black holes, Astrophys. J., 516, 411, (1999)
[27] Odstrčil, D., Improved FCT algorithm for shock hydrodynamics, J. comput. phys., 108, 218, (1993) · Zbl 0791.76058
[28] Orszag, A.; Tang, C.M., Small-scale structure of two-dimensional magnetohydrodynamic turbulence, J. fluid mech., 90, 129, (1979)
[29] Peterkin, R.E.; Frese, M.H.; Sovinec, C.R., Transport of magnetic flux in an arbitrary coordinate ALE code, J. comput. phys., 140, 148, (1998) · Zbl 0905.76060
[30] Poedts, S.; Tóth, G.; Goedbloed, J.P.; Beliën, A.J.C., Nonlinear MHD simulations of wave dissipation in flux tubes, Solar phys., 172, 45, (1997)
[31] Powell, K.G., That works in more than one dimension, An approximate Riemann solver for magnetohydrodynamics, (1994)
[32] Ryu, D.; Jones, T.W.; Frank, A., Numerical magnetohydrodynamics in astrophysics: algorithm and tests for multi-dimensional flow, Astrophys. J., 452, 785, (1995)
[33] Roe, P.L., Approximate Riemann solvers, parameter vectors, and difference schemes, J. comput. phys., 43, 357, (1981) · Zbl 0474.65066
[34] Roe, P.L.; Balsara, D.S., Notes on the eigensystem of magnetohydrodynamics, SIAM J. appl. math., 56, 57, (1996) · Zbl 0845.35092
[35] Ryu, D.; Miniati, F.; Jones, T.W.; Frank, A., A divergence-free upwind code for multi-dimensional magnetohydrodynamic flows, Astrophys. J., 509, 244, (1998)
[36] Schutgens, N.A.J.; Tóth, G., Numerical simulation of prominence oscillations, Astron. astrophys., 345, 1038, (1999)
[37] H. De Sterck, private communication, 1998.
[38] Stone, J.M.; Norman, M.L., ZEUS-2D: A radiation magnetohydrodynamics code for astrophysical flows in two space dimensions. II. the magnetohydrodynamic algorithms and tests, Astrophys. J. suppl., 80, 791, (1992)
[39] Strang, G., On the construction and comparison of difference schemes, SIAM J. numer. anal., 5, 506, (1968) · Zbl 0184.38503
[40] Tóth, G., A general code for modeling MHD flows on parallel computers: versatile advection code, Astrophys. lett. comm., 34, 245, (1996)
[41] Tóth, G., Versatile advection code, Lecture notes in computer science, 1225, 253, (1997)
[42] Tóth, G., The LASY preprocessor and its application to general multi-dimensional codes, J. comput. phys., 138, 981, (1997) · Zbl 0903.76077
[43] Tóth, G.; Keppens, R.; Botchev, M.A., Implicit and semi-implicit schemes in the versatile advection code: numerical tests, Astron. astrophys., 332, 1159, (1998)
[44] Tóth, G.; Odstrčil, D., Comparison of some flux corrected transport and total variation diminishing numerical schemes for hydrodynamic and magnetohydrodynamic problems, J. comput. phys., 128, 82, (1996) · Zbl 0860.76061
[45] van der Vorst, H.A., Bi-CGSTAB: A fast and smoothly converging variant of bi-CG for the solution of nonsymmetric linear systems, SIAM J. sci. statist. comput., 13, 631, (1992) · Zbl 0761.65023
[46] van Leer, B., Towards the ultimate conservative difference scheme. V. A second order sequel to Godunov’s method, J. comput. phys., 32, 101, (1979) · Zbl 1364.65223
[47] M. Vinokur, A rigorous derivation of the MHD equations based only on Faraday’s and Ampère’s law, presentation at LANL MHD Workshop, 1996.
[48] H. C. Yee, A class of high-resolution explicit and implicit shock-capturing methods, NASA TM-101088, 1989.
[49] H. C. Yee, N. R. Sandham, and, M. J. Djomehri, High Order Shock-Capturing Methods Using Characteristic Filters, RIACS Report, May 1998;, J. Comput. Phys. 150, 1, 1999. · Zbl 0936.76060
[50] Zachary, A.L.; Malagoli, A.; Colella, P., A higher-order Godunov method for multidimensional ideal magnetohydrodynamics, SIAM J. sci. comput., 15, 263, (1994) · Zbl 0797.76063
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.