Martel, Yvan; Merle, Frank Asymptotic stability of solitons for subcritical generalized KdV equations. (English) Zbl 0981.35073 Arch. Ration. Mech. Anal. 157, No. 3, 219-254 (2001). This paper is devoted to the generalized Korteweg-de Vries equation in the subcritical case, that is \[ \begin{cases} u_t+ (u_{xx}+ u^p)_x= 0,\quad &(t,x)\in \mathbb{R}\times \mathbb{R},\\ u(0, x)= u_0(x),\quad & x\in\mathbb{R}\end{cases}\tag{1} \] for \(p= 2,3,4\) and \(u_0\in H^1(\mathbb{R})\). The author proves asymptotic completeness of the family of solutions in the energy space for (1). Reviewer: Messoud Efendiev (Berlin) Cited in 9 ReviewsCited in 75 Documents MSC: 35Q53 KdV equations (Korteweg-de Vries equations) 37K45 Stability problems for infinite-dimensional Hamiltonian and Lagrangian systems 35B35 Stability in context of PDEs 35B40 Asymptotic behavior of solutions to PDEs Keywords:generalized Korteweg-de Vries equation; subcritical case; asymptotic completeness; energy space PDF BibTeX XML Cite \textit{Y. Martel} and \textit{F. Merle}, Arch. Ration. Mech. Anal. 157, No. 3, 219--254 (2001; Zbl 0981.35073) Full Text: DOI OpenURL