Nelli, Barbara; Semmler, Beate Some remarks on compact constant mean curvature hypersurfaces in a halfspace of \(\mathbb{H}^{n+1}\). (English) Zbl 0981.53049 J. Geom. 64, No. 1-2, 128-140 (1999). The authors give a theorem (see the abstract of the paper for a complete statement of it) for hypersurfaces of constant mean curvature in a halfspace of hyperbolic space \(\mathbb H ^{n+1}\). They consider embedded compact hypersurfaces \(M\) with boundary \(\partial M\) in the boundary geodesic hyperplane \(P\) of the halfspace and with non-zero mean curvature. They also prove a result about the topology of such hypersurfaces. Reviewer: Ildefonso Castro Lopez (Jaen) Cited in 4 Documents MSC: 53C42 Differential geometry of immersions (minimal, prescribed curvature, tight, etc.) 53A10 Minimal surfaces in differential geometry, surfaces with prescribed mean curvature Keywords:constant mean curvature; large hypersurfaces; Alexandrov reflection technique PDF BibTeX XML Cite \textit{B. Nelli} and \textit{B. Semmler}, J. Geom. 64, No. 1--2, 128--140 (1999; Zbl 0981.53049) Full Text: DOI References: [1] Alexandrov, A.D.: Uniqueness theorems for surfaces in the large. V. Vestnik Leningrad Univ., 13 No. 19 A.M.S. (Series 2)21 (1958) 412-416. [2] De Miranda Gomez, J.: Sobre hipersuperficies com curvatura media constante no espaco hiperbolico. PhD thesis, IMPA (1985). [3] Gilbarg, D. andTrudinger, N.S.: Elliptic Partial Differential Equations of Second Order. Springer-Verlag (1983). · Zbl 0562.35001 [4] Korevaar, N. andKusner, R. andMeeks III,W.H. andSolomon, B.: Constant mean curvature surfaces in hyperbolic space. American Journal of Mathematics114 (1992) 1-43. · Zbl 0757.53032 · doi:10.2307/2374738 [5] Ros, A. andRosenberg, H.: Constant mean curvature surfaces in a half-space of ?3 with boundary in the boundary of the half-space. To appear in Journal of Differential Geometry (1997). [6] Semmler, B.: Blow up theorems for compact constant mean curvature surfaces. Preprint (1997). This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.