zbMATH — the first resource for mathematics

\(\mathbb{A}^1\)-homotopy theory of schemes. (English) Zbl 0983.14007
In this paper the authors develop \(\mathbb{A}^1\)-homotopy theory of schemes – a homotopy theory of algebraic varieties where the affine line plays the role of the unit interval.
In the three chapters and nine paragraphs the authors present:
A homotopy category of a site with interval;
the \(\mathbb{A}^1\)-homotopy category of schemes over a base,
classifying spaces of algebraic groups.
First, they give a number of general results about simplicial sheaves on sites which are latter applied to the study of the homotopy category of schemes. Then, the authors study the basic properties of the \(\mathbb{A}^1\)-homotopy category \({\mathcal H}(S)\) of smooth schemes over a base scheme \(S\) with interval \(((Sm/S)_{Nis},\mathbb{A}^1)\) where \(Sm/S\) is the category of smooth schemes (of finite type) over \(S\) and Nis refers to the Nisnevich topology. They discuss the properties of the homotopy category of simplicial sheaves on \((Sm/S)_{Nis}\), then they prove three theorems with a major role in further applications of their constructions. Finally the authors consider some examples of topological realization functors.
The last chapter is dedicated to applications of the general technique developed above. The main results are: A geometrical construction of a space which represents in \({\mathcal H}(S)\) the functor \(H^1_{et}(-,G)\) for étale group schemes \(G\) of order prime to \(\text{char} (S)\), the second result shows that algebraic \(K\)-theory of a regular scheme \(S\) can be described in terms of morphisms in \({\mathcal H}(S)\) with values in the infinite Grassmannian and the third result shows how one can use \(\mathbb{A}^1\)-homotopy theory together with basic functoriality for simplicial sheaves on smooth sites to give a definition of Quillen-Thomason \(K\)-theory for all Noetherian schemes.

14F35 Homotopy theory and fundamental groups in algebraic geometry
55P43 Spectra with additional structure (\(E_\infty\), \(A_\infty\), ring spectra, etc.)
18G55 Nonabelian homotopical algebra (MSC2010)
Full Text: DOI Numdam EuDML
[1] M. Artin, On the joins of Hensel rings,Advances in Math. 7 (1971), 282–296. · Zbl 0242.13021 · doi:10.1016/S0001-8708(71)80007-5
[2] A. K. Bousfield andE. M. Friedlander, Homotopy theory of \(\Gamma\)-spaces, spectra, and bisimplicial sets,Lecture Notes in Math. 658 (1978), 80–130. · Zbl 0405.55021 · doi:10.1007/BFb0068711
[3] A. K. Bousfield andD. M. Kan,Homotopy limits, completions and localizations, Lecture Notes in Math. 304 (1972), Springer-Verlag. · Zbl 0259.55004
[4] A. K. Bousfield, Constructions of factorization systems in categories,J. Pure Appl. Alg. 9 (1977), 207–220. · Zbl 0361.18001 · doi:10.1016/0022-4049(77)90067-6
[5] A. K. Bousfield, Homotopical localizations of spaces,American J. of Math. 119 (1997), 1321–1354. · Zbl 0886.55011 · doi:10.1353/ajm.1997.0036
[6] K. S. Brown, Abstract homotopy theory and generalized sheaf cohomology,Trans. A.M.S., vol.186 (1973), 419–458. · Zbl 0271.55007 · doi:10.1090/S0002-9947-1973-0341469-9
[7] K. S. Brown andS. M. Gersten, Algebraic K-theory and generalizied sheaf cohomology,Lecture Notes in Math. 341 (1973), 266–292. · doi:10.1007/BFb0067062
[8] B. Dayton, K-theory of tetrahedra,J. Algebra (1979), 129–144.
[9] W. G. Dwyer, P. S. Hirschhorn, andD. M. Kan, Model categories and general abstract homotopy theory,In preparation.
[10] E. Dror-farjoun, Cellular Spaces, Null Spaces and Homotopy Localizations,Lecture Notes in Math. 1622 (1973), Springer-Verlag. · Zbl 0842.55001
[11] R. Fritsch andR. A. Piccinini,Cellular structures in topology, Cambridge, Cambridge Univ. Press, 1990. · Zbl 0837.55001
[12] E. M. Friedlander andB. Mazur,Filtrations on the homology of algebraic varieties, vol. 529 ofMemoir of the AMS, AMS, Providence, RI, 1994.
[13] A. Grothendieck, M. Artin andJ.-L. Verdier, Théorie des topos et cohomologie étale des schémas (SGA 4),Lecture Notes in Math. 269, 270, 305 (1972–1973), Heidelberg, Springer.
[14] A. Grothendieck andJ. Dieudonné,Étude globale élémentaire de quelques classes de morphismes (EGA 2), Publ. Math. IHES 8, 1961.
[15] A. Grothendieck andJ. Dieudonné,Étude locale des schémas et des morphismes de schémas (EGA 4), Publ. Math. IHES 20, 24, 28, 32, 1964–1967.
[16] M. Hovey, B. Shipley andJ. Smith, Symmetric spectra,Preprint, 1996. · Zbl 0931.55006
[17] J. F. Jardine, Simplicial objects in a Grothendieck topos,Contemporary Math. 55(1) (1986), 193–239. · Zbl 0606.18006
[18] J. F. Jardine, Simplicial presheaves,J. Pure Appl. Algebra 47 (1987), 35–87. · Zbl 0624.18007 · doi:10.1016/0022-4049(87)90100-9
[19] J. F. Jardine, Stable homotopy theory of simplicial presheaves,Canadian J. Math. 39(3) (1987), 733–747. · Zbl 0645.18006 · doi:10.4153/CJM-1987-035-8
[20] A. Joyal, Letter to A. Grothendieck (1984).
[21] S. Maclane,Categories for working mathematician, vol. 5 ofGraduate texts in Mathematics, Springer-Verlag, 1971. · Zbl 0705.18001
[22] J. P. May,Simplicial objects in algebraic topology, Van Nostrand, 1968. · Zbl 0165.26004
[23] J. P. Meyer, Cosimplicial homotopies,Proc. AMS 108(1) (1990), 9–17. · Zbl 0683.18012 · doi:10.1090/S0002-9939-1990-0976365-2
[24] J. S. Milne,étale Cohomology, Princeton Math. Studies33, Princeton University Press (1980).
[25] Y. Nisnevich, The completely decomposed topology on schemes and associated descent spectral sequences in algebraic K-theory. InAlgebraic K-theory: connections with geometry and topology, p. 241–342. Kluwer Acad. Publ., Dordrecht, 1989. · Zbl 0715.14009
[26] D. Quillen, Homotopical algebra,Lecture Notes in Math. 43 (1973), Berlin, Springer-Verlag.
[27] G. B. Segal, Classifying spaces and spectral sequences,Publ. Math. IHES 34 (1968), 105–112. · Zbl 0199.26404
[28] A. Suslin, andV. Voevodsky, Singular homology of abstract algebraic varieties,Invent. math. 123 (1996), 61–94. · Zbl 0896.55002 · doi:10.1007/BF01232367
[29] R. Thomason, Algebraic K-theory and étale cohomology,Ann. Sci. ENS 18 (1985), 437–552. · Zbl 0596.14012
[30] R. Thomason andT. Trobaugh, Higher algebraic K-theory of schemes and of derived categories, InThe Grothendieck festchrift, vol. 3 (1990), 247–436, Boston, Birkhauser. · Zbl 0731.14001
[31] V. Voevodsky, Homology of schemes,Selecta Mathematica, New Series 2(1) (1996), 111–153. · Zbl 0871.14016 · doi:10.1007/BF01587941
[32] V. Voevodsky, TheA 1-homotopy theory,Proceedings of the international congress of mathematicians, Berlin, 1998. · Zbl 0907.19002
[33] C. Weibel, Homotopy K-theory,Contemp. Math. 83 (1987), 461–488. Theorem
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.