Kubo, Reijiro; Ogura, Waichi; Saito, Takesi; Yasui, Yukinori The Gauss-Knörrer map for the Rosochatius dynamical system. (English) Zbl 0984.37066 Phys. Lett., A 251, No. 1, 6-12 (1999). Summary: We found a nonlinear integrable system dual to the Rosochatius dynamical system in arbitrary dimensions by means of the Gauss-Knörrer map. The relationship between the Rosochatius system and its dual system is elucidated from the point of view of constrained Hamiltonian systems. Dirac brackets for dynamical variables and conserved quantities for the dual system are derived explicitly. Cited in 8 Documents MSC: 37J35 Completely integrable finite-dimensional Hamiltonian systems, integration methods, integrability tests 70H05 Hamilton’s equations 70H15 Canonical and symplectic transformations for problems in Hamiltonian and Lagrangian mechanics Keywords:nonlinear integrable system; Gauss-Knörrer map; Rosochatius system; Dirac bracket; conserved quantities PDF BibTeX XML Cite \textit{R. Kubo} et al., Phys. Lett., A 251, No. 1, 6--12 (1999; Zbl 0984.37066) Full Text: DOI arXiv OpenURL References: [1] Neumann, C., J. reine angew. math., 56, 46, (1859) [2] Jacobi, C.G.J., Vorlesungen fiber dynamik, () [3] Knörrer, H., J. reine angew. math., 334, 69, (1982) [4] Korteweg, D.J.; de Vries, G., Philos. mag. ser. 5, 39, 422, (1895) [5] Miura, R.M., J. math. phys., 9, 1202, (1968) [6] Ablowitz, M.J.; Clarkson, P.A., Solitons, nonlinear evolution equations and inverse scattering, (1991), Cambridgez · Zbl 0762.35001 [7] Adler, M.; van Moerbeke, P., Commun. math. phys., 113, 659, (1988) [8] Rosochatius, E., Über die bewegung eines punktes, () · JFM 09.0651.02 [9] Ratiu, T., The Lie algebraic interpretation of the complete integrability of the Rosochatius system, (), 109 [10] Wojciechowski, S., Phys. lett. A, 107, 106, (1985) [11] Dirac, P.A.M., Lectures on quantum mechanics, yeshiva university, (1967), Academic Press New York [12] Henneaux, M.; Teitelboim, C., Quantization of gauge systems, (1992), Princeton Univ. Press Princeton · Zbl 0838.53053 [13] Ragnisco, O.; Suris, Y.B., On the r-matrix structure of the Neumann system and its discretizations, () · Zbl 0872.35063 [14] Moser, J., (), 147 [15] Moser, J., Prog. math., 8, 333, (1978) [16] Moser, J., Integral Hamiltonian systems and spectral theory, (1981), Lezioni Fermiane Pisa [17] Uhlenbeck, K.K., Lect. notes math., 949, 146, (1982) [18] Deift, P.; Lund, F.; Turbowitz, E., Commun. math. phys., 74, 141, (1980) [19] Wojciechowski, S., Phys. scripta, 31, 433, (1985) [20] Ferapontov, E.V.; Fordy, A.P., J. geom. phys., 21, 169, (1997) [21] Veselov, A.P., Math. Z., 216, 337, (1994) [22] Mumford, D., Tata lectures on theta II, (1983), Birkhaeuser [23] Dubrovin, B.A., Russ. math. surv., 36, 11, (1981) [24] Semenov-Tian-Shansky, M.A., Integrable systems II, () · Zbl 1030.37048 [25] Gurarie, D., J. math. phys., 36, 5355, (1995) [26] Cewen, Cao, Classical integrable systems, () · Zbl 0739.58027 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.