A new class of PT-symmetric Hamiltonians with real spectra. (English) Zbl 0984.81041

Summary: We investigate complex PT-symmetric potentials, associated with quasi-exactly solvable non-Hermitian models involving polynomials and a class of rational functions. We also look for special solutions of intertwining relations of SUSY quantum mechanics providing a partnership between a real and a complex PT-symmetric potential of the kind mentioned above. We investigate conditions sufficient to ensure the reality of the full spectrum or, for the quasi-exactly solvable systems, the reality of the energy of the finite number of levels.


81Q10 Selfadjoint operator theory in quantum theory, including spectral analysis
Full Text: DOI arXiv


[1] Andrianov, A.; Cannata, F.; Dedonder, J.-P.; Ioffe, M., Int. J. mod. phys. A, 14, 2675, (1999)
[2] Cannata, F.; Junker, G.; Trost, J., Phys. lett. A, 246, 219, (1998)
[3] Khare, A.; Mandal, B.P.
[4] Bender, C.M.; Boettler, S.; Meisinger, P.N., J. math. phys., 40, 2201, (1999)
[5] Turbiner, A., Commun. math. phys., 118, 467, (1988)
[6] Ushveridze, A., Sov. J. part. nucl., Fiz. elem. chast. atom. yad., 20, 1185, (1989), transl. from
[7] Shifman, M., Contemp. math., 160, 237, (1994)
[8] Junker, G., Supersymmetric methods in quantum and statistical physics, (1996), Springer Berlin · Zbl 0867.00011
[9] Cooper, F.; Khare, A.; Sukhatme, U., Phys. rep., 25, 268, (1995)
[10] Bagchi, B.; Quesne, C., Phys. lett. A, 273, 285, (2000) · Zbl 1050.81546
[11] Levai, G.; Znojil, M., J. phys. A: math. gen., 33, 7165, (2000)
[12] Bagchi, B.; Cannata, F.; Quesne, C., Phys. lett. A, 269, 79, (2000)
[13] Znojil, M.; Cannata, F.; Bagchi, B.; Roychoudhury, R., Phys. lett. B, 483, 284, (2000)
[14] Znojil, M., J. phys. A: math. gen., 33, 6825, (2000)
[15] Znojil, M., Phys. lett. A, 259, 220, (1999)
[16] Andrianov, A.; Cannata, F.; Ioffe, M.; Nishnianidze, D., Phys. lett. A, 266, 341, (2000)
[17] Bagchi, B.; Roychoudhury, R., J. phys. A: math. gen., 33, L1, (2000) · Zbl 0967.81016
[18] Bender, C.; Boettler, S., J. phys. A: math. gen., 31, L273, (1998)
[19] Bender, C.M.; Dunne, G.V., J. math. phys., 37, 6, (1996)
[20] Finkel, F.; Gonzalez-Lopez, A.; Kamran, N.; Olver, P.J.; Rodriguez, M.A.
[21] Roy, B.; Roy, P.; Roychoudhury, R., Fortschr. phys., 39, 3, (1991), 211
[22] Andrianov, A.; Cannata, F.; Dedonder, J.-P.; Ioffe, M., Int. J. mod. phys. A, 10, 2683, (1995)
[23] Roy, P.; Roychoudhury, R., Phys. lett. A, 214, 266, (1996)
[24] Roy, P.; Roychoudhury, R.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.