Coincidences and fixed points of nonself hybrid contractions. (English) Zbl 0985.47046

Let \((X, d)\) be a complete metrically convex metric space, \(K\) a non-empty closed subset of \(X\), \(F, G: K \to CL(X), S, T\) selfmaps of \(K\). The hybrid contractions in this paper satisfy the inequality \(H(Fx, Gy) \leq \alpha d(Tx, Sy) + \beta[d(Tx, Fx) + d(Sy, Gy)] + \gamma[d(Tx, Gy) + d(Sy, Fx)]\) for each \(x,y \in X\), where \(\alpha, \beta, \gamma\) are nonnegative and satisfy the conditions \(\alpha + 2\beta + 2\gamma < 1\) and \((\alpha + \beta + \gamma)((1 + \beta + \gamma)/(1 - \beta - \gamma))^2 < 1\). The authors obtain sufficient conditions for the pairs \(F\) and \(T\) and \(G\) and \(S\) to have a coincidence. By adding some additional conditions, it is shown that the maps have a common fixed point. The results of this paper extend and correct similar results stated in A. Ahmad and M. Imdad [J. Math. Anal. Appl. 218, No. 2, 546-560 (1998; Zbl 0888.54046)] and A. Ahmed and A. R. Khan [ibid. 213, No. 1, 275-286 (1997; Zbl 0902.47047)].


47H10 Fixed-point theorems
47J05 Equations involving nonlinear operators (general)
47H09 Contraction-type mappings, nonexpansive mappings, \(A\)-proper mappings, etc.
47H04 Set-valued operators
Full Text: DOI


[1] Ahmad, A.; Imdad, M., Some common fixed point theorems for mappings and multi-valued mappings, J. Math. Anal. Appl., 218, 546-560 (1998) · Zbl 0888.54046
[2] Ahmed, A.; Khan, A. R., Some common fixed point theorems for non-self hybrid contractions, J. Math. Anal. Appl., 213, 275-286 (1997) · Zbl 0902.47047
[3] Assad, N. A., Fixed point theorems for set-valued transformations on compact set, Boll. Un. Mat. Ital., 4, 1-7 (1973) · Zbl 0265.54046
[4] Assad, N. A.; Kirk, W. A., Fixed point theorems for set-valued mappings of contractive type, Pacific J. Math., 43, 553-562 (1972) · Zbl 0239.54032
[5] Hadžić, O., On coincidence points in convex metric spaces, Univ. Novom Sadu Zb. Rad. Prirod.-Mat. Fak. Ser. Mat., 19, 233-240 (1989) · Zbl 0718.54048
[6] Hadžić, O.; Gajić, Lj., Coincidence points for set-valued mappings in convex metric spaces, Univ. Novom Sadu Zb. Rad. Prirod-Mat. Fak. Ser., 16, 13-25 (1986) · Zbl 0639.54037
[7] Hicks, T.; Rhoades, B. E., Fixed points and continuity for multivalued mappings, Internat. J. Math. Math. Sci., 15, 15-30 (1992) · Zbl 0746.54017
[8] Itoh, S., Multivalued generalized contractions and fixed point theorems, Comment. Math. Univ. Carolin., 18, 247-258 (1977) · Zbl 0359.54038
[9] Itoh, S.; Takahashi, W., Single-valued mappings, multivalued mappings and fixed point theorems, J. Math. Anal. Appl., 59, 514-521 (1977) · Zbl 0351.47040
[10] Jungck, G., Common fixed points for noncontinuous nonself maps on nonmetric spaces, Far East J. Math. Sci., 4, 199-215 (1996) · Zbl 0928.54043
[11] Jungck, G.; Rhoades, B. E., Fixed points for set valued functions without continuity, Indian J. Pure Appl. Math., 29, 227-238 (1998) · Zbl 0904.54034
[12] Kaneko, H.; Sessa, S., Fixed point theorems for compatible multi-valued and single-valued mappings, Internat. J. Math. Math. Sci., 12, 257-262 (1989) · Zbl 0671.54023
[13] Khan, M. S., Common fixed point theorems for multivalued mappings, Pacific. J. Math., 95, 337-347 (1981) · Zbl 0419.54030
[14] Matkowski, J.; Wegrzyk, R., On equivalence of some fixed point theorems for selfmappings of metrically convex space, Boll. Un. Mat. Ital. A (5), 15, 359-369 (1978) · Zbl 0401.54039
[15] Nadler, S. B., Hyperspaces of Sets (1978), Dekker: Dekker New York · Zbl 0432.54007
[16] Pant, R. P., Common fixed point theorems for contractive maps, J. Math. Anal. Appl., 226, 251-258 (1998) · Zbl 0916.54027
[17] Singh, S. L.; Ha, K. S.; Cho, Y. J., Coincidence and fixed points of nonlinear hybrid contractions, Internat. J. Math. Math. Sci., 12, 247-256 (1989) · Zbl 0669.54024
[18] Singh, S. L.; Mishra, S. N., Nonlinear hybrid contractions, J. Natur. Phys. Sci., 5-8, 191-206 (1991-1994) · Zbl 0862.54035
[19] Yanagi, K., A common fixed point theorem for a sequence of multivalued mappings, Publ. Res. Inst. Math. Sci., 15, 47-52 (1979) · Zbl 0403.54050
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.