×

Transient wave propagation in a one-dimensional poroelastic column. (English) Zbl 0987.74039

It is known that in porous media there occur three waves, two compressional waves (of which one is the so-called slow wave), and a shear wave. Here, the authors present a study on the corresponding one-dimensional waves in a poroelastic column, and construct efficient numerical procedures for inverting the Laplace transform which they use for the solution of the problem.

MSC:

74J10 Bulk waves in solid mechanics
74F10 Fluid-solid interactions (including aero- and hydro-elasticity, porosity, etc.)
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Biot, M. A.: General theory of three-dimensional consolidation. Journal of Applied Physics12, 155-164 (1941). · JFM 67.0837.01
[2] Biot, M. A.: Theory of elasticity and consolidation for a porous anisotropic solid. Journal of Applied Physics26, 182-185 (1955). · Zbl 0067.23603
[3] Biot, M. A.: Theory of deformation of a porous viscoelastic anisotropic solid. Journal of Applied Physics27, (5) 459-467 (1956).
[4] Biot, M. A.: Theory of propagation of elastic waves in a fluid-saturated porous solid I: Low-frequency range. Journal of the Acoustical Society of America28 (2), 168-178 (1956).
[5] Biot, M. A.: Theory of propagation of elastic waves in a fluid-saturated porous solid II: Higher frequency range. Journal of the Acoustical Society of America28 (2), 179-191 (1956).
[6] Plona, T. J.: Observation of a second bulk compressonal wave in porous medium at ultrasonic frequencies. Applied Physics Letters36 (4), 259-261 (1980).
[7] Ehlers, W.: Porose Medien-ein kontinuumsmechanisches Modell auf der Basis der Mischungstheorie. Forschungsbericht aus dem Fachbereich Bauwesen 47, Universität-GH Essen 1989.
[8] Ehlers, W., Kubik, J.: On finite dynamic equations for fluid-saturated porous media. Acta Mechanica105, 101-117 (1994). · Zbl 0814.76078
[9] Grag, S. K., Nafeh, A. H., Good, A. J.: Compressional waves in fluid-saturated elastic porous media. Journal of Applied Physics45, 1968-1974 (1974).
[10] Hong, S. J., Sandhu, R. S., Wolfe, W. E.: On Grag’s solution of Biot’s equations for wave propagation in a one-dimensional fluid-saturated elastic porous solid. International Journal for Numerical and Analytical Methods in Geomechanics12, 627-637 (1988). · Zbl 0669.73020
[11] Hiremath, M. S., Sandhu, R. S., Morland, L. W., Wolfe, W. E.: Analysis of one-dimensional wave propagation in a fluid-saturated finite soil column. International Journal for Numerical and Analytical Methods in Geomechanics12, 121-139 (1988). · Zbl 0631.73088
[12] Cheng, A. H.-D., Badmus, T., Beskos, D. E.: Integral equations for dynamic poroelasticity in frequency domain with BEM-solution. Journal of Engineering Mechanics ASCE117 (5), 1136-1157 (1991).
[13] de Boer, R., Ehlers, W., Liu, Z.: One-dimensional transient wave propagation in fluid-saturated incompressible porous media. Archive of Applied Mechanics63, 59-72 (1993). · Zbl 0767.73013
[14] Vgenopoulou, I., Beskos, D. E.: Dynamic behavior of saturated poroviscoelastic media. Acta Mechanica95, 185-195 (1992). · Zbl 0756.73080
[15] Lubich, C.: Convolution quadrature and discretized operational calculus I. Numerische Mathematik52, 129-145 (1988). · Zbl 0637.65016
[16] Dubner, H., Abate, J.: Numerical inversion of Laplace transforms by relating them to the finite Fourier cosine transform. Journal of the Association for Computing Machinery15 (1), 115-123 (1968). · Zbl 0165.51403
[17] Durbin, F.: Numerical inversion of Laplace transforms: an efficient improvement to Dubner and Abate’s method. The Compute Journal17 (4), 371-376 (1974). · Zbl 0288.65072
[18] Crump, K. S.: Numerical inversion of Laplace transforms using a Fourier series approximation. Journal of the Association for Computing Machinery23 (1), 89-96 (1976). · Zbl 0315.65074
[19] Cheng, A. H.-D., Sidauruk, P., Abousleiman, Y.: Approximate inversion of the Laplace transform. The Mathematica Journal4 (2), 76-82 (1994).
[20] Schanz, M., Antes, H.: Application of ?Operational Quadrature Methods? in time domain boundary element methods. Meccanica32 (3), 179-186 (1997). · Zbl 0913.73075
[21] Detournay, E., Cheng, A. H.-D.: Fundamentals of Poroelasticity, vol. II. Comprehensive rock engineering: Principles, practice & projects, chap. 5, 113-171. Pergamon Press 1993.
[22] Bonnet, G., Auriault, J.-L.: Dynamics of saturated and deformable porous media: Homogenization theory and determination of the solid-liquid coupling coefficients. In Physics of Finely Divided Matter. (Boccara, N. and Daoud, M., eds.), 306-316. Berlin: Springer Verlag 1985.
[23] Bonnet, G.: Basic singular solutions for a poroelastic medium in the dynamic range. Journal of the Acoustical Society of America82 (5), 1758-1762 (1987).
[24] Graff, K. F.: Wave motion in elastic solids. Oxford University Press 1975. · Zbl 0314.73022
[25] Narayanan, G. V. Beskos, D. E.: Numerical operational methods for time-dependent linear problems. International Journal for Numerical Methods in Engineering18, 1829-1854 (1982). · Zbl 0493.65070
[26] Kim, Y. K., Kingsbury, H. B.: Dynamic characterization of poroelastic materials. Experimental Mechanics19, 252-258 (1979).
[27] Badiey, M., Cheng, A. H.-D., Mu, Y.: From geology to geoacoustics-evaluation of Biot-Stoll sound speed and attenuation for shallow water acoustics. Journal of the Acoustical Society of America103 (1), 309-320 (1998).
[28] Lubich, C.: Convolution quadrature and discretized operational calculus II. Numerische Mathematik52, 413-425 (1988). · Zbl 0643.65094
[29] Schanz, M., Antes, H.: A new visco-and elastodynamic time domain boundary element formulation. Computational Mechanics20 (5), 452-459 (1997). · Zbl 0898.73071
[30] Schanz, M.: A boundary element formulation in time domain for viscoelastic solids. Communications in Numerical Methods in Engineering15, 799-809 (1999). · Zbl 0952.74080
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.