×

An Erdős-Kac theorem for systems of \(q\)-additive functions. (English) Zbl 0988.11037

Let \(f_i\) be a \(q_i\)-additive function for \(i=1,2, \dots , l\), and let \(m_1, \dots , m_l\), \(b_1, \dots, b_l\), \(\beta \), \(\gamma \) be positive integers. The authors study the distribution of the number \(\omega (n)\) of prime divisors on the set defined by the congruences \(n \equiv \beta \pmod{\gamma } \) and \(f_i(n)\equiv b_i \pmod{m_i} \). They show that with the proper centering and norming, it has a normal limiting distribution, and they give an estimate of type \( \log \log\log N / \sqrt { \log\log N}\) for the error term when the distribution on \(n\leq N\) is considered. This generalizes the work of C. Mauduit and A. Sárközy [J. Number Theory 61, 25–38 (1996; Zbl 0868.11004), Acta Arith. 81, 145–173 (1997; Zbl 0887.11008)], who investigated the particular case when the functions \(f_i\) are equal to the sum of digits in base \(q_i\). An important tool is a result of D.-H. Kim [J. Number Theory 74, 307–336 (1999; Zbl 0920.11067)] on the distribution of systems of \(q\)-additive functions in residue classes.

MSC:

11K65 Arithmetic functions in probabilistic number theory
60F99 Limit theorems in probability theory
11N60 Distribution functions associated with additive and positive multiplicative functions
11N69 Distribution of integers in special residue classes
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Berry, A. C., The accuracy of the Gaussian approximation to the sum of independent variates, Trans. Amer. Math. Soc., 49, 121-136 (1941) · JFM 67.0461.01
[2] Bésineau, J., Indépendence statistique d’ensembles liés à la fonction ‘sommes des chiffres’, Acta Arith., 20, 401-416 (1972) · Zbl 0252.10052
[3] Delange, H., Sur la fonction sommatoire de la fonction ‘somme des chiffres’, Enseign. Math. (2), 21, 31-47 (1975) · Zbl 0306.10005
[4] Elliott, P. D.T. A., Probabilistic Number Theory I. Central Limit Theorems (1979), Springer: Springer New-York · Zbl 0431.10029
[5] Elliott, P. D.T. A., Probabilistic Number Theory II. Mean Value Theorems (1980), Springer: Springer New-York · Zbl 0431.10030
[6] Erdős, P.; Kac, M., On the Gaussian law of errors in the theory of additive functions, (Proc. Nat. Acad. Sci. U.S.A., 25 (1939)), 206-207 · JFM 65.0164.02
[7] Erdős, P.; Kac, M., The Gaussian law of errors in the theory of additive number-theoretic functions, Amer. J. Math., 62, 738-742 (1940) · JFM 66.0172.02
[8] Esseen, C. G., Fourier analysis of distribution functions. A mathematical study of the Laplace-Gaussian law, Acta Math., 77, 1-125 (1945) · Zbl 0060.28705
[9] Gelfond, A. O., Sur les nombres qui ont des propriétés additives et multiplicatives données, Acta Arith., 13, 259-265 (1968) · Zbl 0155.09003
[10] Kim, D.-H, On the joint distribution of \(q\)-additive functions in residue classes, J. Number Theory, 74, 307-336 (1999) · Zbl 0920.11067
[11] Mauduit, C.; Sárközy, A., On the arithmetic structure of sets characterized by sum of digits properties, J. Number Theory, 61, 25-38 (1996) · Zbl 0868.11004
[12] Mauduit, C.; Sárközy, A., On the arithmetic structure of integers, whose sum of digits functionis fixed, Acta Arith., 81, 145-173 (1997) · Zbl 0887.11008
[13] Prachar, K., Primzahlverteilung (1957), Springer: Springer Berlin · Zbl 0080.25901
[14] Thuswaldner, J.M. — The complex sum of digits function and primes. J. Théor. Nombres Bordeaux, to appear.; Thuswaldner, J.M. — The complex sum of digits function and primes. J. Théor. Nombres Bordeaux, to appear. · Zbl 1012.11071
[15] Zhang, W.-B, Probabilistic number theory in additive semigroups I, (Berndt, B. C.; etal., Analytic Number Theory, Proceedings of a Conference in Honor of Heini Halberstam, volume 2 (1996)), 839-885, Boston, Basel, Berlin · Zbl 0861.11048
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.