×

zbMATH — the first resource for mathematics

Generalized one-parameter bifurcation diagram reconstruction using time series. (English) Zbl 0988.37095
The authors use time series in reconstructing bifurcation diagrams of dynamical systems that cannot be modeled directly from first principles. Here, at different unknown parameter values time series are available. They are used to obtain a suitable family of nonlinear predictor functions with qualitatively similar bifurcation structure as the original system.
The authors propose a generalized one-parameter algorithm in reconstructing the bifurcation diagrams based on principal curves. The bifurcation diagrams of the FritzHugh-Nagumo equations and the Lorenz equations are used for numerical illustration. Important features of the bifurcation diagrams of the original systems, e.g. Hopf bifurcation, are preserved by the reconstruction algorithm.

MSC:
37M10 Time series analysis of dynamical systems
37G99 Local and nonlocal bifurcation theory for dynamical systems
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Farmer, J.D.; Ott, E.; York, J.A., Physica D, 7, 153, (1983)
[2] Theiler, J., J. opt. soc. am., 7, 1055, (1990)
[3] Sano, M.; Sawada, Y., Phys. rev. lett., 55, 1082, (1985)
[4] Eckmann, J.P.; Kamphorst, S.O.; Ruelle, D.; Ciliberto, S., Phys. rev. A, 34, 4971, (1986)
[5] Brown, R.; Bryant, P.; Abarbanel, H.D.I., Phys. rev. A, 43, 2787, (1990)
[6] Ozaki, T.; Jimenez, J.; Haggan-Ozaki, V., The role of the likelihood function in the estimation of chaos models, () · Zbl 0974.62084
[7] Casdagli, M., Physica D, 35, 335, (1989)
[8] Tokuda, I.; Kajiwara, S.; Tokunaga, R.; Matsumoto, T., Physica D, 95, 380, (1996)
[9] Tokunaga, R.; Kajiwara, S.; Matsumoto, T., Physica D, 79, 348, (1994)
[10] Takens, F., Detecting strange attractor in turbulence, (), 366
[11] Farmer, J.D.; Sidorowich, J.J., Phys. rev. lett., 59, 845, (1987)
[12] Linsay, P.S., Phys. lett. A, 153, 353, (1991)
[13] Ozaki, T., J. appl. prob., 10, 443, (1981)
[14] T. Ozaki, Nonlinear time series models and dynamical systems, in: E. Hannan et al. (Eds.), Handbook of Statistics, vol. 5, North-Holland, Amsterdam, pp. 25-83.
[15] Broomhead, D.; Lowe, D., Complex systems, 2, 321, (1988)
[16] Hornik, K.; Stinchcombe, M.; White, H., Neural networks, 2, 359, (1989)
[17] Hastie, T.; Stuetzle, W., J. am. stat. assoc., 84, 502, (1989)
[18] FitzHugh, R., Biophys. J., 1, 445, (1961)
[19] Nagumo, J.; Arimoto, J.; Yoshizawa, S., (), 2061
[20] Abarbanel, H.D.I.; Brown, R.; Sidorowich, J.J.; Tsimring, L., Rev. mod. phys., 65, 1331, (1993)
[21] Press, W.H.; Vettering, W.T.; Teukosky, S.A.; Plannery, B.P., Numerical recipe in C: the art of scientific computing, ()
[22] Wiggins, S., Introduction to applied nonlinear dynamical systems and chaos, (1990), Springer Cambridge · Zbl 0701.58001
[23] Lorenz, E., J. atmos. sci., 20, 130, (1963)
[24] Sparrow, C., The Lorenz equations: bifurcation, chaos, and strange attractors, () · Zbl 0504.58001
[25] Jaegar, L.; Kantz, H., Effective deterministic models for chaotic dynamics perturbed by noise, Phys. rev. E, 55, 5, (1997)
[26] Silverman, B.W., J. roy. stat. soc. B, 47, 1, (1985)
[27] Cleveland, W.S., J. am. stat. assoc., 74, 829, (1979)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.